BERNOULLI EQUATIONS Lecture slides by Yosua Heru Irawan.

Slides:



Advertisements
Presentasi serupa
Mekanika Teknik III (Strength of Materials)
Advertisements

FISIKA TERMAL BAGIAN 2.
MOTOR BAKAR Kuliah I.
1. Mass of an object is a measure of the inertia of the object. Inertia is the tendency of a body at rest to remain atrest, and a body in motion to continue.
PHYSICS AND SYSTEM UNITS AMOUNT
LABOR MARKET Kuliah 12. THE LABOR MARKET..1  When firms respond to an increase in demand by stepping up production : Higher production requires an increase.
Economic models Consept of sets. Ingredients of mathematical models An economic model is merely a theoretical framework, and there is no inherent reason.
CHAPTER 2 THERMOCHEMISTRY.
PERILAKU HIDROLIKA Sesi IV.
1. The transformation of raw materials into products of greater value by means of chemical reaction is a major industry, and a vast array of commercial.
1 DATA STRUCTURE “ STACK” SHINTA P STMIK MDP APRIL 2011.
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
Medan Listrik (Electric fields)
Mekanisme Pasar Permintaan dan Penawaran
TRANSPORT OF IONS IN SOLUTION
Universitas Jenderal Soedirman Purwokerto FISIKA DASAR II Oleh : Mukhtar Effendi.
A. Agung Putu Susastriawan., ST., M.Tech
Masalah Transportasi II (Transportation Problem II)
BAB 6 KOMBINATORIAL DAN PELUANG DISKRIT. KOMBINATORIAL (COMBINATORIC) : ADALAH CABANG MATEMATIKA YANG MEMPELAJARI PENGATURAN OBJEK- OBJEK. ADALAH CABANG.
Pertemuan 07 Peluang Beberapa Sebaran Khusus Peubah Acak Kontinu
HAMPIRAN NUMERIK SOLUSI PERSAMAAN NIRLANJAR Pertemuan 3
Dr. Nur Aini Masruroh Deterministic mathematical modeling.
1 HAMPIRAN NUMERIK SOLUSI PERSAMAAN LANJAR Pertemuan 5 Matakuliah: K0342 / Metode Numerik I Tahun: 2006 TIK:Mahasiswa dapat meghitung nilai hampiran numerik.
Pasar Faktor Produksi.
Gunawan. SISTEM PENILAIAN KKomponen Penilaian : AAbsensi (10 %) TTugas/Quis (10 %) UUjian I (mid semester) (40 %) UUjian II (akhir semester)
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
Electric Field Wenny Maulina. Electric Dipole A pair of equal and opposite charges q separated by a displacement d is called an electric dipole. It has.
1 CTC 450 ► Bernoulli’s Equation ► EGL/HGL. Bernoulli’s Equation 2
KONSEP DASAR TERMODINAMIKA AGUS HARYANTO FEBRUARI 2010.
Thermodinamika FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS MERCU BUANA
Mekanika Fluida Minggu 04
MEKANIKA TEKNIK TI KESEIMBANGAN BENDA TEGAR
ALIRAN INVISCID DAN INCOMPRESSIBLE, PERSAMAAN MOMENTUM, PERSAMAAN EULER DAN PERSAMAAN BERNOULLI Dosen: Novi Indah Riani, S.Pd., MT.
KOMUNIKASI DATA Materi Pertemuan 3.
Recurrence relations.
Analisis Energi Volume Atur
Proses astrofisika i SENSITIVITY TO INITIAL CONDITIONS
Cartesian coordinates in two dimensions
Cartesian coordinates in two dimensions
Lecture 7 Thermodynamic Cycles
Creatif by : Nurlia Enda
1. Photoelectric effect photon K A V Potentiometer electron
ILMU FISIKA Oleh : Mukhtar Effendi
Matakuliah : I0014 / Biostatistika Tahun : 2005 Versi : V1 / R1
Velocity of Reaction and Energy
Work and Energy (Kerja dan Energi)
TL2101 Mekanika Fluida I Benno Rahardyan Pertemuan 3.
Parabola Parabola.
TERMODINAMIKA Departemen Fisika
TL2101 Mekanika Fluida I Benno Rahardyan Pertemuan 5.
TL2101 Mekanika Fluida I Benno Rahardyan Pertemuan 4.
Two-and Three-Dimentional Motion (Kinematic)
Kelompok 6 Nurlia Enda Hariza NiMade Mahas
Pendugaan Parameter (II) Pertemuan 10
FACTORING ALGEBRAIC EXPRESSIONS
PERTEMUAN 1.
Chapter VIII Fluid Mechanics
Physical Property Of Corn Seed
Chapter 4 ENERGY ANALYSIS OF CLOSED SYSTEMS
Capter 2 Fluids.
Mechanical Energy & Efficiency
HEAT CONDUCTION IN CYLINDERS & SPHERES
INTRODUCTION INTERNAL FLOW
Chapter 3 PROPERTIES OF PURE SUBSTANCES
HEAT CONDUCTION IN SPHERES
Pertemuan 9 Analisis Massa & Energi Pada Control Volume (1)
FORCES. A force is an influence on a system or object which, acting alone, will cause the motion of the system or object to change. If a system or object.
Pertemuan 3 PRESSURE Yosua Heru Irawan Lecture slides by
Modul Tekanan, Fluida Chotimah.
Transcript presentasi:

BERNOULLI EQUATIONS Lecture slides by Yosua Heru Irawan

5–4 ■ THE BERNOULLI EQUATION Bernoulli equation: An approximate relation between pressure, velocity, and elevation, and is valid in regions of steady, incompressible flow where net frictional forces are negligible. Despite its simplicity, it has proven to be a very powerful tool in fluid mechanics. The Bernoulli approximation is typically useful in flow regions outside of boundary layers and wakes, where the fluid motion is governed by the combined effects of pressure and gravity forces. The Bernoulli equation is an approximate equation that is valid only in inviscid regions of flow where net viscous forces are negligibly small compared to inertial, gravitational, or pressure forces. Such regions occur outside of boundary layers and wakes.

Derivation of the Bernoulli Equation Steady flow: Bernoulli equation Steady, incompressible flow: The sum of the kinetic, potential, and flow energies of a fluid particle is constant along a streamline during steady flow when compressibility and frictional effects are negligible. The Bernoulli equation between any two points on the same streamline:

The Bernoulli equation can be viewed as the “conservation of mechanical energy principle.” The Bernoulli equation states that the sum of the kinetic, potential, and flow energies of a fluid particle is constant along a streamline during steady flow.

Static, Dynamic, and Stagnation Pressures Multiplying the Bernoulli equation by the density gives P is the static pressure: It does not incorporate any dynamic effects; it represents the actual thermodynamic pressure of the fluid. This is the same as the pressure used in thermodynamics and property tables. V2/2 is the dynamic pressure: It represents the pressure rise when the fluid in motion is brought to a stop isentropically. gz is the hydrostatic pressure: It is not pressure in a real sense since its value depends on the reference level selected; it accounts for the elevation effects, i.e., fluid weight on pressure. (Be careful of the sign—unlike hydrostatic pressure gh which increases with fluid depth h, the hydrostatic pressure term gz decreases with fluid depth.) Total pressure: The sum of the static, dynamic, and hydrostatic pressures. Therefore, the Bernoulli equation states that the total pressure along a streamline is constant.

Stagnation pressure: The sum of the static and dynamic pressures Stagnation pressure: The sum of the static and dynamic pressures. It represents the pressure at a point where the fluid is brought to a complete stop isentropically. Close-up of a Pitot-static probe, showing the stagnation pressure hole and two of the five static circumferential pressure holes. The static, dynamic, and stagnation pressures measured using piezometer tubes.

Contoh aplikasi persamaan bernouilli: Sebuah tangki terbuka diisi air dengan ketinggian 5 m. Saluran pembuangan yang ada dibagian bawah tangki kemudian dibuka, dan air mengalir keluar secara perlahan. Tentukan kecepatan maksimum pada saluran keluar tangki?. Torricelli equations

Contoh: Mengalirkan bahan bakar dari tangki ke penampung. Hitung: Waktu yang diperlukan untuk mengeluarkan 4 liter dari tangki ke penampung? (diameter selang 5 mm) Tekanan pada posisi 3 (density bahan bakar 750 kg/m3)

P1 dan P2 = tekanan atmosfer dan z2 dianggap posisi terendah (z2=0) a. Sehingga waktu yang diperlukan untuk mengeluarkan 4 liter bahan bakar adalah:

b. Untuk mengetahui tekanan pada posisi 3 (P3), digunakan persamaan Bernoulli untuk menganalisis posisi 2 dan 3. V1 = V2 karena hokum konservasi massa,

Contoh: Mengukur kecepatan menggunakan pitot tube Hitung kecepatan pada bagian tengah pipa (V1) ? Tekanan pada posisi 1 dan 2: Persamaan Bernoulli untuk posisi 1 dan 2: Z1 = z2 dan kecepatan pada stagnation point V2 = 0

Memasukan persamaan P1 dan P2 pada persamaan Bernoulli: Mencari V1: