Otomata & Teori Bahasa Finite State Automata: - Non Deterministic Finite Automata dengan -move - Penggabungan dan Konkatenasi FSA.

Slides:



Advertisements
Presentasi serupa
Penggabungan dan Penyambungan
Advertisements

Teori Bahasa dan Automata
Teori Bahasa dan Otomata 2 sks
Ekuivalensi NDFA ke DFA dan NDFA dengan E-move
Pertemuan 4 Finite Automata
Oleh: BAGUS ADHI KUSUMA, ST
MODUL 9 -move Gambar 20. Mesin NFA HUBUNGAN ANTARA
-move Gambar 20. Mesin NFA HUBUNGAN ANTARA
Pertemuan 4 Non Deterministic Finite Automaton (NFA)
Ekivalensi -move pada Non Deterministik FSO ke Deterministik FSO
Bab VII FINITE STATE AUTOMATA DENGAN OUTPUT.
BAB II FINITE STATE AUTOMATA.
OTOMATA HINGGA.
BAB II FINITE STATE AUTOMATA.
BAB II FINITE STATE AUTOMATA.
BAB V EKSPRESI REGULER 1. Penerapan Ekspresi Reguler
BAB V EKSPRESI REGULER 1. Penerapan Ekspresi Reguler
TEORI BAHASA DAN AUTOMATA
BAB III EKIVALENSI DFA KE NFA
NON DETERMINISTIC FINITE AUTOMATA DENGAN ε - MOVE
BAB II FINITE STATE AUTOMATA.
BAB II FINITE STATE AUTOMATA.
Pertemuan 3 FINITE AUTOMATA
PUSH DOWN AUTOMATA ( PDA )
Teori Bahasa dan Automata
NON DETERMINISTIC FINITE AUTOMATA DENGAN ε - MOVE
4. NFA DENGAN -MOVE.
Non Deterministic Finite Automata dengan є – Move
NDFA dengan ε-Move CSG3D3 | Teori Komputasi Agung Toto Wibowo
FINITE STATE AUTOMATA (FSA)
FINITE STATE AUTOMATA (FSA)
Teori-Bahasa-dan-Otomata
BAB II FINITE STATE AUTOMATA.
OTOMATA DAN TEORI BAHASA FORMAL
Finite State Automata: Reduksi Jumlah State
Penggabungan dan Konkatenasi Finite State Automata
FINITE STATE AUTOMATA (FSA)
Teori Bahasa dan Automata
Teori Bahasa dan Automata
By : Lisda Juliana Pangaribuan
Teori-Bahasa-dan-Otomata
Teori-Bahasa-dan-Otomata
Teori-Bahasa-dan-Otomata
ATURAN PRODUKSI TATA BAHASA REGULER
OTOMATA DAN TEORI BAHASA FORMAL
Teori-Bahasa-dan-Otomata
OTOMATA DAN TEORI BAHASA FORMAL
NON DETERMINISTIC FINITE AUTOMATA DENGAN ε - MOVE
OTOMATA DAN TEORI BAHASA FORMAL
BAB II FINITE STATE AUTOMATA.
OTOMATA DAN TEORI BAHASA 2
NON DETERMINISTIC FINITE AUTOMATA DENGAN ε - MOVE
Bab VII FINITE STATE AUTOMATA DENGAN OUTPUT.
GABUNGAN & KONKATENASI
Teori-Bahasa-dan-Otomata
Finite State Automata ♦ model matematika yang dapat menerima input dan mengeluarkan output ♦ Memiliki state yang berhingga banyaknya dan dapat berpindah.
Aturan Produksi Untuk Suatu Finite State Automata
Otomata & Teori Bahasa ( Week 4 )
NFA dengan ε-move.
Pertemuan 4 Non Deterministic Finite Automaton (NFA)
Erwin Hidayat (M ) UTeM || 2010
Ekuivalensi NFA KE DFA *YANI*.
EKUIVALENSI NFA KE DFA.
OTOMATA DAN TEORI BAHASA 3
Pertemuan4.
Tinjauan Instruksional Khusus:Mahasiswa akan dapat menjelaskan cara kerja Deterministic Finite Automata (DFA),Non-Deterministic Finite Automata (NDFA),Non.
OTOMATA DAN TEORI BAHASA 8.
Otomata & Teori Bahasa ( Week 4 )
Otomata & Teori Bahasa ( Week 4 )
OTOMATA DAN TEORI BAHASA 8.
Transcript presentasi:

Otomata & Teori Bahasa Finite State Automata: - Non Deterministic Finite Automata dengan -move - Penggabungan dan Konkatenasi FSA

Non DFA dengan  - move (transisi ) Dapat merubah state satu ke state lain tanpa membaca input Tidak bergantung pada suatu input ketika melakukan transisi q0 q1 q4 q3 q2  b a dari q0 tanpa membaca input dapat berpindah ke q1 dari q1 tanpa membaca input dapat berpindah ke q2 dari q4 tanpa membaca input dapat berpindah ke q1

-closure untuk NFA -move himpunan-himpunan state-state yang dapat dicapai dari sebuah state tanpa membaca input. Dari diagram NFA dengan -move maka dihasilkan: -closure (q0)= q0,q1,q2 -closure (q1) = q1,q2 -closure (q2) = q2 -closure (q3) = q3 -closure (q4) = q1,q2,q4 q0 q1 q4 q3 q2  b a * State yg tidak memiliki transisi , maka -closurenya adalah state itu sendiri

Ekivalensi NFA -move ke NFA tanpa -move q1 q2 q0 q3  b a q1 q2 q0 q3  b a NFA tanpa -move NFA dengan -move Gambar diatas menunjukkan bahwa keduanya mampu menerima bahasa yang sama (ekivalen) NFA dengan -move awal menerima bahasa yang memuat string ’b’, dan NFA tanpa - move pada gambar diatas juga mampu menerima bahasa yang memuat string ‘b’.

NFA -move ke NFA tanpa -move Buat tabel transisi NFA dengan -move awal Tentukan -closure untuk setiap state Carilah setiap fungsi transisi hasil perubahan dari NFA dengan - move ke NFA tanpa -move (kita sebut saja sebagai ’) dimana ’ didapatkan dengan rumus: ’(state, input) = _closure ((_closure(state, input)) Berdasarkan hasil diatas, kita bisa membuat tabel transisi dan diagram transisi dari NFA tanpa -move yang ekivalen dengan NFA dengan -move tersebut. Jangan lupa menentukan state-state akhir untuk Non-deterministic Finite Automata tanpa -move tersebut, yaitu state-state akhir semula ditambah dengan state-state yang _closure –nya menuju ke salah satu dari state akhir semula. Dalam bahasa formalnya: F’ = F  q(-closure (q)  F) 

Ekivalensi NFA -move ke NFA tanpa -move Contoh: Buatlah NFA tanpa -move yang ekivalen dengan NFA -move dibawah ! q0 q1 a b q2 

NFA -move ke NFA tanpa -move 1. Buat Tabel Transisi  a b q0 q0  q1 q2 q2 2. Tentukan -closure untuk setiap state: _ closure (q0) = q0,q1 _ closure (q1) = q1 _ closure (q2) = q0,q1,q2

NFA -move ke NFA tanpa -move 3. Tentukan ’: ’(q0,a) = _closure ((_closure(q0),a)) = _closure ((q0,q1,a)) = _closure (q0) = q0,q1 ’(q0,b) = _closure ((_closure(q0),b)) = _closure ((q0,q1,b)) = _closure (q2)= q0,q1,q2 ’(q1,a) = _closure ((_closure(q1),a)) = _closure ((q1,a)) = _closure () =  ’(q1,b) = _closure ((_closure(q1),b)) = _closure ((q1,b)) = _closure (q2) = q0,q1,q2 ’(q2,a) = _closure ((_closure(q2),a)) = _closure ((q0,q1,q2,a)) = _closure (q0) = q0,q1 ’(q2,b) = _closure ((_closure(q2),b)) = _closure ((q0,q1,q2,b)) = _closure (q2) = q0,q1,q2

NFA -move ke NFA tanpa -move 4. Buat Tabel Transisi untuk NFA tanpa  -move  a b q0 q0,q1 q0,q1,q2 q1  q2 5. Tentukan State Akhir - Himpunan state akhir semula adalah q0 - Cari _closure yang memuat state q0  _closure (q2) = q0,q1,q2 F = {q0,q2}

NFA -move ke NFA tanpa -move Hasil akhir diagram NFA tanpa e-move q0 b q1 ab q2

Penggabungan dan Konkatenasi FSA Pada dua mesin Finite State Automata kita dapat melakukan penggabungan antar kedua mesin tersebut yaitu dengan union dan konkatensi. Union L(M’) = L(M1) + L(M2) Konkatenasi L(M’’) = L(M1) L(M2)

Penggabungan dan Konkatenasi FSA Contoh: qA1 qA0 1 Mesin M1 qB1 qB0 1 Mesin M2 Tentukan : L(M’) = L(M1) + L(M2) dan L(M’’) = L(M1) L(M2)

Penggabungan dan Konkatenasi FSA q1 qA0 1 qS qB0 qB1 qA1  L(M’) = L(M1) + L(M2) qf qS qB0 qA1 1  L(M’’) = L(M1) L(M2)

Terima Kasih