Penggabungan dan Penyambungan

Slides:



Advertisements
Presentasi serupa
Teori Bahasa dan Automata
Advertisements

Review Materi Widodo.com
Teori Bahasa dan Automata
Teori Bahasa dan Automata
Teori Bahasa dan Otomata 2 sks
Ekuivalensi NDFA ke DFA dan NDFA dengan E-move
Pertemuan 4 Finite Automata
Yenni Astuti Version Week-6NFA ke DFA Mengapa NFA ke DFA? NFA lebih mudah dimengerti dan didesain, dibanding DFA. Namun dalam prakteknya, DFA lebih.
SUATU FINITE STATE AUTOMATA
Pertemuan 11 PUSH DOWN AUTOMATA (PDA)
Oleh: BAGUS ADHI KUSUMA, ST
MODUL 9 -move Gambar 20. Mesin NFA HUBUNGAN ANTARA
-move Gambar 20. Mesin NFA HUBUNGAN ANTARA
Pertemuan 3 Konversi NFA - DFA dan Konversi ε-NFA - DFA
REGULAR EXPRESSION Yenni Astuti Version
B. Deterministic Finite Automata(DFA) (Otomata Berhingga Deterministik) Pada DFA, dari suatu “state ada tepat satu state berikutnya untuk setiap simbol.
Pertemuan 4 Non Deterministic Finite Automaton (NFA)
Ekivalensi -move pada Non Deterministik FSO ke Deterministik FSO
Push Down Automata (PDA)
REVIEW HIMPUNAN PENGERTIAN HIMPUNAN REPRESENTASI HIMPUNAN
Session 5 Finite Automata
BAB II FINITE STATE AUTOMATA.
Pertemuan 3 Finite Automata
Pertemuan 2 FINITE AUTOMATA (DFA & NFA)‏
OTOMATA HINGGA.
BAB II FINITE STATE AUTOMATA.
BAB II FINITE STATE AUTOMATA.
Teori Bahasa dan Otomata 2 sks
Pertemuan 3 BAHASA REGULAR
BAB V EKSPRESI REGULER 1. Penerapan Ekspresi Reguler
TEORI BAHASA DAN AUTOMATA
BAB III EKIVALENSI DFA KE NFA
NON DETERMINISTIC FINITE AUTOMATA DENGAN ε - MOVE
BAB II FINITE STATE AUTOMATA.
BAB II FINITE STATE AUTOMATA.
NON DETERMINISTIC FINITE AUTOMATA DENGAN ε - MOVE
4. NFA DENGAN -MOVE.
Non Deterministic Finite Automata dengan є – Move
NDFA dengan ε-Move CSG3D3 | Teori Komputasi Agung Toto Wibowo
FINITE STATE AUTOMATA (FSA)
Teori-Bahasa-dan-Otomata
BAB II FINITE STATE AUTOMATA.
OTOMATA DAN TEORI BAHASA FORMAL
FINITE STATE AUTOMATA (FSA)
Teori Bahasa dan Automata
Teori-Bahasa-dan-Otomata
OTOMATA DAN TEORI BAHASA FORMAL
Teori-Bahasa-dan-Otomata
NON DETERMINISTIC FINITE AUTOMATA DENGAN ε - MOVE
OTOMATA DAN TEORI BAHASA FORMAL
BAB II FINITE STATE AUTOMATA.
OTOMATA DAN TEORI BAHASA 2
NON DETERMINISTIC FINITE AUTOMATA DENGAN ε - MOVE
GABUNGAN & KONKATENASI
TEORI BAHASA DAN AUTOMATA
Teori-Bahasa-dan-Otomata
Finite State Automata ♦ model matematika yang dapat menerima input dan mengeluarkan output ♦ Memiliki state yang berhingga banyaknya dan dapat berpindah.
Otomata & Teori Bahasa ( Week 4 )
NFA dengan ε-move.
Pertemuan 4 Non Deterministic Finite Automaton (NFA)
Erwin Hidayat (M ) UTeM || 2010
Ekuivalensi NFA KE DFA *YANI*.
EKUIVALENSI NFA KE DFA.
OTOMATA DAN TEORI BAHASA 3
Pertemuan4.
Tinjauan Instruksional Khusus:Mahasiswa akan dapat menjelaskan cara kerja Deterministic Finite Automata (DFA),Non-Deterministic Finite Automata (NDFA),Non.
Otomata & Teori Bahasa Finite State Automata: - Non Deterministic Finite Automata dengan -move - Penggabungan dan Konkatenasi FSA.
Otomata & Teori Bahasa ( Week 4 )
Otomata & Teori Bahasa ( Week 4 )
OTOMATA DAN TEORI BAHASA 8.
Transcript presentasi:

Penggabungan dan Penyambungan NFA dengan Transisi - ε Fradika Indrawan,.S.T Materi NFA –epsilon Konversi NFA-ε ke NFA Penggabungan dan Penyambungan

ε (epsilon) ----» string kosong Pada NFA jenis ini diperbolehkan suatu status berubah secara sepontan tanpa membaca input ε (epsilon) ----» string kosong a ε b

ε-closure adalah himpunan state yang dapat dicapai dari suatu state tanpa adanya input. Contohnya : (dari gambar di atas) Klosure-ε (qo) = {qo ,q1 } Klosure-ε (q1) = {q1} Klosure-ε (q2) = {q2}

Ekuivalensi NFA dengan ε-move ke NFA tanpa ε-move Buat tabel transisi NFA dengan ε-move Tentukan ε-closure setiap state Carilah fungsi transisi /tabel transisi yang baru, rumus : δ’(state,input)=ε-closure(δ(ε-closure(state,input)) Tentukan state akhir ditambah dengan state yang ε-closure nya menuju state akhir, rumusnya : F’ = F ∪ {q | (ε-closure(q) ∩ F ≠ ∅}

Contohnya : ε a qo q1 q2 b q3

Tabel Transisi δ a b ε qo Ø q1 q2 q3

Klosure-ε setiap state Klosure-ε (qo) = {qo ,q1} Klosure-ε (q1) = {q1} Klosure-ε (q2) = {q2} Klosure-ε (q3) = {q3}

Tabel Transisi yang baru (δ’) q0 ε-cl(δ(ε-cl(q0),a)) ε-cl(δ({q0,q1},a)) ε-cl(q2) {q2} ε-cl(δ(ε-cl(q0),b)) ε-cl(δ({q0,q1},b)) ε-cl(q3) {q3} q1 ε-cl(δ(ε-cl(q1),a)) ε-cl(δ({q1},a)) ε-cl(δ(ε-cl(q1),b)) ε-cl(δ({q1},b)) q2 ε-cl(δ(ε-cl(q2),a)) ε-cl(δ({q3},a)) ε-cl(∅) ∅ ε-cl(δ(ε-cl(q2),b)) ε-cl(δ({q2},b)) q3 ε-cl(δ(ε-cl(q3),a)) ε-cl(δ(ε-cl(q3),b)) ε-cl(δ({q3},b))

Hasil ekuivalensi a q2 a qo q1 b b q3

Penggabungan dan Konketenasi FSA Bila diketahui L1 adalah bahasa yang diterima oleh M1 dan L2 adalah bahasa yang diterima oleh M2 maka 1. FSA M3 yang dapat menerima L1+L2 dibuat dengan cara ♦ Tambahkan state awal untuk M3, hubungkan dengan state awal M1 dan state awal M2 menggunakan transisi ε ♦ Tambahkan state akhir untuk M3, hubungkan dengan state-state akhir M1 dan state-state akhir M2 menggunakan transisi ε

2. FSA M4 yang dapat menerima L1L2 dibuat dengan cara ♦ State awal M1 menjadi state awal M4 ♦ State-state akhir M2 menjadi state-state akhir M4 ♦ Hubungkan state-state akhir M1 dengan state awal M2 menggunakan transisi

Contoh FSA M1 dan M2

FSA M3

FSA M4