Selamat Datang Dalam Kuliah Terbuka Analisis Rangkaian Listrik Sesi-7 1.

Slides:



Advertisements
Presentasi serupa
Selamat Datang Dalam Tutorial Ini
Advertisements

TURUNAN/ DIFERENSIAL.
Selamat Datang Dalam Kuliah Terbuka Ini 1. Kuliah terbuka kali ini berjudul “Pilihan Topik Matematika -II” 2.
Open Course Selamat Belajar.
Selamat Datang Dalam Kuliah Terbuka Analisis Rangkaian Listrik Sesi 5 1.
Time Domain #4. Analisis Rangkaian Listrik Di Kawasan Waktu Pelajaran #4 Oleh Sudaryatno Sudirham.
Elektronika Dasar (Minggu 3)
Selamat Datang Dalam Kuliah Terbuka Ini
Analisis Rangkaian Listrik di Kawasan Fasor
Selamat Datang Dalam Kuliah Terbuka Ini 1. Kuliah terbuka kali ini berjudul “Analisis Rangkaian Listrik di Kawasan Fasor” 2.
Selamat Datang Dalam Kuliah Terbuka Analisis Rangkaian Listrik Sesi-6
Selamat Belajar Open Course. Analisis Rangkaian Listrik Di Kawasan Waktu - Course #2 Oleh: Sudaryatno Sudirham.
Open Course Selamat Belajar.
Time Domain #5. Analisis Rangkaian Listrik Di Kawasan Waktu Pelajaran #5 Oleh Sudaryatno Sudirham.
ELEKTRONIKA Bab 7. Pembiasan Transistor
Selamat Datang Dalam Kuliah Terbuka Ini
Analisis Rangkaian Listrik di Kawasan Waktu
Selamat Datang Dalam Kuliah Terbuka Ini
Analisis Rangkaian Listrik di Kawasan Fasor
Selamat Datang Dalam Kuliah Terbuka Ini
Analisis Rangkaian Listrik di Kawasan Fasor
Selamat Datang Dalam Tutorial Ini
HUKUM-HUKUM RANGKAIAN
Analisis Rangkaian Listrik Analisis Menggunakan Transformasi Laplace
Soal –soal hukum I Kirchoff
Selamat Datang Dalam Kuliah Terbuka Ini
Selamat Datang Dalam Kuliah Terbuka Ini 1. Kuliah terbuka kali ini berjudul “Analisis Rangkaian Listrik di Kawasan s” 2.
LISTRIK DINAMIS.
RANGKAIAN DC YUSRON SUGIARTO.
Selamat Datang Dalam Kuliah Terbuka Ini
Selamat Datang Dalam Tutorial Ini 1. Petunjuk Dalam mengikuti tutorial jarak jauh ini, pertanyakanlah apakah yang disampaikan pada setiap langkah presenmtasi.
ARUS SEARAH (DC) (Arus dan Tegangan Listrik)
Sistem Distribusi DC Ir. Sjamsjul Anam, MT.
Analisis Rangkaian Listrik
Arus Listrik dan Lingkar
Selamat Datang Dalam Kuliah Terbuka Analisis Rangkaian Listrik Sesi-9
Selamat Datang Dalam Kuliah Terbuka Analisis Rangkaian Listrik Sesi-10
Analisis Rangkaian Listrik Metoda-Metoda Analisis
ARUS SEARAH (DC) (Arus dan Tegangan Listrik)
Analisis Rangkaian Listrik Di Kawasan Waktu Rangkaian Pemroses Energi Rangkaian Pemroses Sinyal.
Analisis Rangkaian Listrik
Selamat Datang Dalam Kuliah Terbuka Ini
Selamat Datang Dalam Kuliah Terbuka Analisis Rangkaian Listrik Sesi-8 1.
Analisis Rangkaian Listrik di Kawasan Fasor
Circuit Analysis Phasor Domain #2.
Metoda-Metoda Perhitungan Rangkaian
Analisis Rangkaian Listrik Di Kawasan Waktu Rangkaian Pemroses Energi dan Pemroses Sinyal.
Analisis Rangkaian Listrik Hukum, Kaidah, Teorema Rangkaian
Analisis Rangkaian Listrik Di Kawasan Waktu Metoda-Metoda Analisis.
RANGKAIAN HAMBATAN Rangkaian hambatan listrik yang dapat dipecahkan berdasarkan hukum Ohm dan hukum I Kirchhoff. 1. Rangkaian seri 2. Rangkaian paralel.
LISTRIK DINAMIS Listrik mengalir.
Analisis Rangkaian Listrik di Kawasan Waktu Model Piranti Pasif Model Piranti Aktif.
Rangkaian dengan Opamp
Rangkaian dengan Opamp
Penguat Operasional Ideal dan Riil
Model Dioda Bias Maju.
Penguat Operasional (Op-Amp)
Analisis Rangkaian Listrik di Kawasan Fasor
Pemberian bias pada rangkaian BJT
Tutorial #1. Hukum Kirchhoff simpul super 1A 55 10  55 Penerapan Hukum Kirchhoff Tentukan tegangan dan arus di resistor.
ELEMEN RANGKAIAN LISTRIK
Selamat Datang Dalam Kuliah Terbuka Analisis Rangkaian Listrik Sesi-3 1.
Konsep Dasar – Simpul danCabang
Rangkaian Arus Searah.
Selamat Datang Dalam Kuliah Terbuka Analisis Rangkaian Listrik Sesi-4
Analisis Rangkaian Listrik di Kawasan Waktu Model Piranti Sudaryatno Sudirham Klik untuk menlanjutkan.
Analisis Rangkaian Listrik Di Kawasan Waktu
Rangkaian Arus Searah Fandi Susanto.
Open Course Selamat Belajar.
Analisis Rangkaian Listrik Analisis Menggunakan Transformasi Laplace
Transcript presentasi:

Selamat Datang Dalam Kuliah Terbuka Analisis Rangkaian Listrik Sesi-7 1

Disajikan oleh Sudaryatno Sudirham melalui 2

3

4

5 Metoda Reduksi Rangkaian ++ 12 V 30  10  30  10  20  + v x  A BC D E 10  30  0,4 A 30  B C E 10  0,4 A 15  BC E 6 V 10  15  ++ + v x  E C B ?

6 Metoda Unit Output 10  36 V ++ 20  30  20  10  20  i1i1 i3i3 i5i5 i2i2 i4i4 +vo+vo A B

7 Metoda Superposisi 30 V +  +  20  10  + V o1  1,5A 20  + V o2  10  30 V + _ 1,5A 20  10  +Vo+Vo = ?

8 Metoda Rangkaian Ekivalen Thévenin i1i1 i3i3 30 V 20  10  i2i2 +v0+v0 + _ A B A Lepaskan beban di AB, sehingga AB terbuka, i 3 = 0 A B 15 V 20  10  +v0+v0 + _ = ?

9 Aplikasi Metoda Analisis Dasar pada Rangkaian Dengan Sumber Tak-Bebas Tanpa Umpan Balik RsRs ++ ++ +   v1  v1 RLRL + v 1  vsvs i s R1R1 v o = ? vovo

10

11 Dasar Arus yang mengalir di cabang rangkaian dari suatu simpul M ke simpul X adalah i MX = G (v M  v X ) Menurut HAK, jika ada k cabang yang terhubung ke simpul M, maka jumlah arus yang keluar dari simpul M adalah Metoda Tegangan Simpul (Node Voltage Method)

12 Kasus-Kasus G1G1 G3G3 G2G2 i1i1 i3i3 i2i2 vBvB vCvC A B C vAvA D vDvD vAvA G1G1 G2G2 vBvB vCvC A B C D vDvD IsIs vAvA G1G1 G2G2 vBvB vCvC A B C D vDvD VsVs ++ G3G3 G4G4 vEvE vFvF E F

13 10  0,4 A 20  10  20  10  ABC D E R1R1 R3R3 R5R5 R 2 R 4 R 6 CONTOH:

14 Simpul super Simpul super 10  15 V 20  10  20  10  R1R1 R2R2 R4R4 R5R5 AB C D E R6R6 R3R3  + CONTOH:

15  Arus mesh bukanlah pengertian yang berbasis pada sifat fisis rangkaian melainkan suatu peubah yang digunakan dalam analisis rangkaian.  Metoda ini hanya digunakan untuk rangkaian planar; referensi arus mesh di semua mesh mempunyai arah yang sama (misalnya dipilih searah putaran jarum jam). IAIA IBIB IDID ICIC ABC F E D G H I arus mesh Metoda Arus Mesh (Mesh Current Method)

16 Dasar Tegangan di cabang yang berisi resistor R y yang menjadi anggota mesh X dan mesh Y adalah v xy = R y ( I x  I y ) I x = arus mesh X; R x = resistansi cabang mesh X yang tidak menjadi anggota mesh Y; I y = arus mesh Y; R y = resistansi cabang mesh Y. Sesuai dengan HTK, suatu mesh X yang terbentuk dari m cabang yang masing-masing berisi resistor, sedang sejumlah n dari m cabang ini menjadi anggota dari mesh lain, berlaku

17 Kasus-Kasus R2R2 IZIZ R3R3 R5R5 R4R4 R1R1 R6R6 R7R7 BC EF AD IXIX IYIY R2R2 ++ R5R5 R4R4 R1R1 R6R6 v1v1 BC EF A D v2v2 +  IYIY IXIX IZIZ mesh super R3R3 ++ R5R5 R4R4 R1R1 R6R6 v1v1 B C E F A D i1i1 IYIY IXIX IZIZ

18 10  30 V 20  10  20  10  AB C D E ++ ICIC IBIB IAIA I C = 0,25 A I B = 0,5 A I A = 1 A CONTOH:

19 10  1 A 20  10  20  10  A B C D E IAIA IBIB ICIC I C = 0,25 A I B = 0,5 A I A = 1 A CONTOH:

20 mesh super 10  1 A 20  10  20  10  AB C D E IAIA IBIB ICIC mesh super I C = 1/3 A I B = 2/3 A I A =  1/3 A CONTOH:

21 Aplikasi Metoda Analisis Umum pada Rangkaian Sumber Tak-Bebas Dengan Umpan Balik Tidak seperti rangkaian tanpa umpan balik yang dapat dianalisis menggunakan metoda dasar, rangkaian jenis ini dianalisis dengan menggunakan metoda tegangan simpul atau arus mesh Agar v D =  10 V, maka 1 k  100v 1 ++ ++ 10k  + v 1  1 V 5k  R F = ? A B C D v D =  10V + 

Kuliah Terbuka Analisis Rangkaian Listrik di Kawasan Waktu Sesi 7 Sudaryatno Sudirham 22