TURBIN AIR.

Slides:



Advertisements
Presentasi serupa
Staf Pengajar Fisika Departemen Fisika, FMIPA, IPB
Advertisements

INDUKSI ELEKTOMAGNETIK
Aplikasi Hukum Newton.
Handout Analisis & Pengukuran Kerja
POMPA AIR DAN RADIATOR.
Prinsip Newton Partikel
EFISIENSI KERJA POMPA UNTUK MENINGKATKAN IRIGASI PERTANIAN
SISTEM KERJA HIDROLIK Eko Syaputra JURUSAN TEKNIK MESIN.
BAB 5 ROTASI KINEMATIKA ROTASI
BASIC ENGINE.
POMPA yusronsugiarto.lecture.ub.ac.id.
Bangunan Pengambilan dan Pembilas
Konsep-konsep Dasar Analisa Struktur
TKS 4008 Analisis Struktur I
Bangunan Pengambilan dan Pembilas
Departemen Fisika, FMIPA, IPB
Tara Kalor Mekanis.
Mekanika Fluida II Jurusan Teknik Mesin FT. UNIMUS Julian Alfijar, ST
Energi Potensial Kemampuan melakukan kerja karena posisi atau letak disebut energi potensial. Sebagai contoh, benda yang terletak pada ketinggian tertentu.
FLUIDA DINAMIS j.
Siklus Udara Termodinamika bagian-1
Kuliah Mekanika Fluida
Mekanika Fluida – Fani Yayuk Supomo, ST., MT
PLTN (Pembangkit Listrik Tenaga Nuklir)
SISTEM PENDINGIN Tujuan Umum
LANDASAN TEORI.
3.5. HEAD ISAP POSITIP NETO ATAU NPSH*
 NAMA : ISMUNANDAR SUTOMO  NIM :  KELAS : B.
JURUSAN TEKNIK ELEKTRONIKA FAKULTAS TEKNIK DAN KEJURUAN
Andari Suryaningsih, S.Pd., MM.
Menghitung Potensi Daya Potensi daya : Pt = ρ.g.Q.H n.η o Pt= daya terbangkit (W), ρ= rapat massa air (kg/m 3 ), g= gravitasi (m 2 /detik), Q= debit aliran.
Nama Kelompok : Danang Dwi Andaru M.Syarifuddin Anshor Dandhi Tri L PEMBANGKIT LISTRIK KINCIR TENAGA ANGIN.
Adrian Situmorang  Turbin adalah suatu alat yang dipergunakan untuk mengkonversikan sebuah energi menjadi energi yang lain. Turbin air.
Dasar-Dasar Kompresi Gas dan klasifikasi
Oleh: Aswan Tajuddin, ST
ALIRAN INVISCID DAN INCOMPRESSIBLE, PERSAMAAN MOMENTUM, PERSAMAAN EULER DAN PERSAMAAN BERNOULLI Dosen: Novi Indah Riani, S.Pd., MT.
1 HIDRODINAMIKA Aliran Berdasarkan cara gerak partikel zat cair aliran dapat dibedakan menjadi 2 macam, yaitu : 1. Aliran Laminair, yaitu suatu aliran.
Berkelas.
Ir. Mochamad Dady Ma‘mun M.Eng, Phd
MOMENTUM DAN TUMBUKAN Departemen Sains.
DINAMIKA FLUIDA.
Pertemuan 1 Pendahuluan
AZAS POMPA Dosen: Novi Indah Riani, S.Pd., MT..
Ir. Mochamad Dady Ma‘mun M.Eng, Phd
DINAMIKA FLUIDA FISIKA SMK PERGURUAN CIKINI.
MOMENTUM LINIER.
Komponen Sistem Hidrolik (lanj)
PERSAMAAN MOMENTUM.
12.2 Memasang alat mesin irigasi
MIXING PRINSIP GAMBAR CARA KERJA.
TEORI DASAR ALIRAN Air yang mengalir mempunyai energi yang dapat digunakan untuk memutar roda turbin, karena itu pusat-pusat tenaga air dihubungkan disungai-sungai.
TUGAS AKHIR MATAKULIAH KONSEP TEKNOLOGI
DINAMIKA FLUIDA.
“Pembangkit Listrik Tenaga Micro Hydro, System Kincir Air kaki Angsa”
PEMBANGKIT LISTRIK TENAGA ANGIN
PENGEMBANGAN SUMBER DAYA AIR
BAB 1 ASAS POMPA.
Pendahuluan Pompa Sentrifugal adalah suatu mesin kinetis yang mengubah energi mekanik ke dalam energi hidrolik melalui aktivitas sentrifugal, yaitu tekanan.
Dasar Konversi Energi 9/15/2018 PS S1 Teknik Elektro.
POMPA IRIGASI Pengertian Pompa adalah jenis mesin fluida yang digunakan untuk memindahkan fluida melalui pipa dari satu tempat ke tempat lain. Dalam menjalankan.
POMPA AIR DAN RADIATOR. POMPA AIR Fungsi pompa air Untuk melancarkan peredaran air yang melalui motor dan radiator supaya pendingin merata dan efesien.
Presentasi Kegiatan Belajar 1 klasifikasi pembangkit tenaga listrik
Teknologi Energi Angin & Air
Teknologi Energi Angin & Air
Teknologi Energi Angin & Air
ENERGI TERBARUKAN ARCHIMEDES SCREW UNTUK PEMBANGKIT LISTRIK SKALA MIKROHIDRO RAMAH LINGKUNGAN DENGAN VARIASI SUDUT TURBIN DAN SUDUT ULIR OLEH : ATIKAH.
Tugas Akhir PENGUJIAN POMPA HIDRAM SEBAGAI POMPA RAMAH LINGKUNGAN
PEMBANGKIT LISTRIK TENAGA ANGIN OLEH: MUHAMMAD LUTHFI YOGI RIDHA PERMANA SRI MUNTIAH ANDRIANI FAISAL RIZKAN.
POMPA. Prinsip kerja Pompa Pada umumnya pompa beroperasi pada prinsip dimana kevacuman sebagai (partial vacuum) yang diciptakan pada inlet pompa sehingga.
Komponen Sistem Hidrolik (lanj). 5. Pompa Pompa merupakan komponen utama pada sistem hidrolik yang berperan sebagai pembangkit tekanan. Pompa menerima.
Transcript presentasi:

TURBIN AIR

Gambaran Turbin air dikembangkan pada abad 19 dan digunakan secara luas untuk tenaga industri untuk jaringan listrik. Sekarang lebih umum dipakai untuk generator listrik. Turbin kini dimanfaatkan secara luas dan merupakan sumber energi yang dapat diperbaharukan.

Sejarah Teori Pengoperasian Jenis–Jenis Turbin Air Desain dan Apikasi Pemeliharaan Pengaruh Pada Lingkungan End

Kincir air sudah sejak lama digunakan untuk tenaga industri Kincir air sudah sejak lama digunakan untuk tenaga industri. Pada mulanya yang dipertimbangkan adalah ukuran kincirnya, yang membatasi debit dan head yang dapat dimanfaatkan. Perkembangan kincir air menjadi turbin modern membutuhkan jangka waktu yang cukup lama. Perkembangan yang dilakukan dalam waktu revolusi industri menggunakan metode dan prinsip ilmiah. Mereka juga mengembangkan teknologi material dan metode produksi baru pada saat itu. Kata "turbine" ditemukan oleh seorang insinyur Perancis yang bernama Claude Bourdin pada awal abad 19, yang diambil dari terjemahan bahasa Latin dari kata "whirling" (putaran) atau "vortex" (pusaran air). Perbedaan dasar antara turbin air awal dengan kincir air adalah komponen putaran air yang memberikan energi pada poros yang berputar. Komponen tambahan ini memungkinkan turbin dapat memberikan daya yang lebih besar dengan komponen yang lebih kecil. Turbin dapat memanfaatkan air dengan putaran lebih cepat dan dapat memanfaatkan head yang lebih tinggi. (Untuk selanjutnya dikembangkan turbin impulse yang tidak membutuhkan putaran air).

Runtutan Sejarah Sebuah sudu turbin Francis yang menghasilkan daya hampir 1 juta hp. Sedang dipasang pada bendungan Grand Coulee. Sebuah sudu tipe baling-baling yang menghasilkan daya 28 ribu hp.

Runtutan Sejarah Ján Andrej Segner mengembangkan turbin air reaksi pada pertengahan tahun 1700. turbin ini mempunyai sumbu horizontal dan merupakan awal mula dari turbin air modern. Turbin ini merupakan mesin yang simpel yang masih diproduksi saat ini untuk pembangkit tenaga listrik skala kecil. Segner bekerja dengan Euler dalam membuat teori matematis awal untuk desain turbin. Pada tahun 1820, Jean-Victor Poncelet mengembangkan turbin aliran kedalam. Pada tahun 1826, Benoit Fourneyon mengembangkan turbin aliran keluar. Turbin ini sangan efisien (~80%) yang mengalirkan air melalui saluran dengan sudu lengkung satu dimensi. Saluran keluaran juga mempunyai lengkungan pengarah. Pada tahun 1844, Uriah A. Boyden mengembangkan turbin aliran keluar yang meningkatkan performa dari turbin Fourneyon. Bentuk sudunya mirip dengan turbin Francis. Pada tahun 1849, James B. Francis meningkatkan efisiensi turbin reaksi aliran kedalam hingga lebih dari 90%. Dia memberikan test yang memuaskan dan mengembangkan metode engineering untuk desain turbin air. Turbin Francis dinamakan sesuai dengan namanya, yang merupakan turbin air modern pertama. Turbin ini masih digunakan secara luas di dunia saat ini.

Runtutan Sejarah Turbin air aliran kedalam mempunyai susunan mekanis yang lebih baik dan semua turbin reaksi modern menggunakan desain ini. Putaran massa air berputar hingga putaran yang semakin cepat, air berusaha menambah kecepatan untuk membangkitkan energi. Energi tadi dibangkitkan pada sudu dengan memanfaatkan berat jatuh air dan pusarannya. Tekanan air berkurang sampai nol sampai air keluar melalui sirip turbin dan memberikan energi. Sekitar tahun 1890, bantalan fluida modern ditemukan, sekarang umumnya digunakan untuk mendukung pusaran turbin air yang berat. Hingga tahun 2002, bantalan fluida terlihat mempunyai arti selama lebih dari 1300 tahun Sekitar tahun 1913, Victor Kaplan membuat turbin Kaplan, sebuah tipe mesin baling-baling. Ini merupakan evolusi dari turbin Francis tetapi dikembangkan dengan kemampuan sumber air yang mempunyai head kecil.

Sebuah Konsep Baru Pada umumnya semua turbin air hingga akhir abad 19 (termasuk kincir air) merupakan mesin reaksi; tekanan air yang berperan pada mesin dan menghasilkan kerja. Sebuah turbin reaksi membutuhkan air yang penuh dalam proses transfer energi. Pada tahun 1866, tukang pembuat gilingan di California, Samuel Knight menemukan sebuah mesin yang mengerjakan tuntas sebuah konsep yang berbeda jauh. Terinspirasi dari system jet tekanan tinggi yang digunakan dalam lapangan pengeboran emas hidrolik, Knight mengembangkan ceruk kincir yang dapat menangkap energi dari semburan jet, yang ditimbulkan dari energi kinetik air pada sumber yang cukup tinggi (ratusan kaki) yang dialirkan melalui sebuah pipa saluran. Turbin ini disebut turbin impulse atau turbin tangensial. Aliran air mendorong ceruk disekeliling kincir turbin pada kecepatan maksimum dan jatuh keluar sudu dengan tanpa kecepatan. Pada tahun 1879, Lester Pelton, melakukan percobaan dengan kincir Knight, dikembangkanlah desain ceruk ganda yang membuang air kesamping, menghilangkan beberapa energi yang hilang pada kincir Knight yang membuang sebagian air kembali melawan kincir. Sekitar tahun 1895, William Doble mengembangkan ceruk setengah silinder milik Pelton menjadi ceruk berbentuk bulat memanjang, termasuk sebuah potongan didalamnya yang memungkinkan semburan untuk membersihkan masukan ceruk. Turbin ini merupakan bentuk modern dari turbin Pelton yang saat ini dapat memberikan efisiensi hingga 92%. Pelton telah memprakarsai desain yang efektif, kemudian Doble mengambil alih perusahaan Pelton dan tidak mengganti namanya menjadi Doble karena nama Pelton sudah dikenal. Turgo dan turbin aliran silang merupakan desain turbin impulse selanjutnya.

Teori Pengoperasian

Teori Pengoperasian Aliran air diarahkan langsung menuju sudu-sudu melalui pengarah, menghasilkan daya pada sirip. Selama sudu berputar, gaya bekerja melalui suatu jarak, sehingga menghasilkan kerja. Dalam proses ini, energi ditransfer dari aliran air ke turbin. Turbin air dibedakan menjadi dua kelompok, yaitu turbin reaksi dan turbin impuls. Kepresisian bentuk turbin air, apapun desainnya, semua digerakkan oleh suplai tekanan air.

Turbin Reaksi Turbin reaksi digerakkan dengan air, yang merubah tekanan sehingga melewati turbin dan menaikkan energi. Turbin reaksi harus menutup untuk mengisi tekanan air (pengisap) atau mereka harus sepenuhnya terendam dalam aliran air. Hukum ketiga Newton menggambarkan transfer energi untuk turbin reaksi Turbiin air yang paling banyak digunakan adalah turbin reaksi. Turbin reaksi digunakan untuk aplikasi turbin dengan head rendah dan medium.

Turbin Impuls Turbin impuls merubah aliran semburan air. Semburan turbin membentuk sudut yang membuat aliran turbin. Hasil perubahan momentum (impuls) disebabkan tekanan pada sudu turbin. Sejak turbin berputar, gaya berputar melalui kerja dan mengalihkan aliran air dengan mengurangi energi. Sebelum mengenai sudu turbin, tekanan air (energi potensial) dikonversi menjadi energi kinetik oleh sebuah nosel dan difokuskan pada turbin. Tidak ada tekanan yang dirubah pada sudu turbin, dan turbin tidak memerlukan rumahan untuk operasinya. Hukum kedua Newton menggambarkan transfer energi untuk turbin impuls. Turbin impuls paling sering digunakan pada aplikasi turbin tekanan sangat tinggi.

Daya Tenaga yang didapat dari aliran air adalah, P = η  ρ  g  h  i    P = η  ρ  g  h  i Dimana  · P = Daya (J/s or watts) · η = efisiensi turbin · ρ = massa jenis air (kg/m3) · g = percepatan gravitasi (9.81 m/s2) · h = head (m). Untuk air tenang, ada perbedaan berat antara permukaan masuk dan keluar. Perpindahan air memerlukan komponen tambahan untuk ditambahkan untuk mendapatkan aliran energi kinetik. Total head dikalikan tekanan head ditambah kecepatan head. · i = aliran rata-rata (m3/s)

Pompa Penyimpanan Beberapa turbin air didesain untuk pompa penyimpan hidroelektrik. Pompa ini dapat mengalirkan dan mengoperasikan pompa untuk memenuhi reservoir tinggi selama listrik tidak beroperasi dan kemudian kembali ke turbin untuk membangkitkan daya selama permintaan listrik tidak beroperasi. Turbin tipe ini biasanya berupa desain turbin Deriaz atau Francis.

Efisiensi Turbin air modern dioperasikan pada efisiensi mekanis lebih dari 90% (tidak terpengaruh efisiensi termodinamika).

Jenis-Jenis Turbin Air

Jenis-Jenis Turbin Air Turbin reaksi · Francis · Kaplan, Propeller, Bulb, Tube, Straflo · Tyson · Kincir air Turbin Impuls · Pelton · Turgo · Michell-Banki (juga dikenal sebagai turbin crossflow atau ossberger).

Desain dan Aplikasi

Desain dan Aplikasi Pemilihan turbin kebanyakan didasarkan pada head air yang didapatkan dan kurang lebih pada rata-rata alirannya. Umumnya, turbin impuls digunakan untuk tempat dengan head tinggi, dan turbin reaksi digunakan untuk tempat dengan head rendah. Turbin Kaplan baik digunakan untuk semua jenis debit dan head, efisiiensinya baik dalam segala kondisi aliran. Turbin kecil (umumnya dibawah 10 MW) mempunyai poros horisontal, dan kadang dipakai juga pada kapasitas turbin mencapai 100 MW. Turbin Francis dan Kaplan besar biasanya mempunyai poros / sudu vertikal karena ini menjadi penggunaan paling baik untuk head yang didapatkan, dan membuat instalasi generator lebih ekonomis. Poros Pelton bisa vertikal maupun horisontal karena ukuran turbin lebih kecil dari head yang di dapat atau tersedia. Beberapa turbin impuls menggunakan beberapa semburan air tiap semburan untuk meningkatkan kecepatan spesifik dan keseimbangan gaya poros.

Tipe Penggunaan Head · Kaplan 2<H<40 (H=head dalam meter) · Francis 10<H<350 · Pelton 50<1300 · Turgo 50<H<250

Kecepatan Spesifik Kecepatan spesifik (ns), menunjukkan bentuk dari turbin itu dan tidak berhubungan dengan ukurannya. Hal ini menyebabkan desain turbin baru yang diubah skalanya dari desain yang sudah ada dengan performa yang sudah diketahui. Kecepatan spesifik merupakan kriteria utama yang menunjukkan pemilihan jenis turbin yang tepat berdasarkan karakteristik sumber air. Kecepatan spesifik dari sebuah turbin juga dapat diartikan sebagai kecepatan ideal, persamaan geometris turbin, yang menghasilkan satu satuan daya tiap satu satuan head. Kecepatan spesifik tubin diberikan oleh perusahaan (dengan penilaian yang lainnya) dan dan selalu dapat diartikan sebagai titik efisiensi maksimum. Perhitungan tepat ini menghasilkan performa turbin dalam jangkauan head dan debit tertentu.

Kecepatan Spesifik , n = rpm , Ω = kecepatan sudut (radian/detik) Gambar diadaptasi dari European Community's Layman's Guidebook (on how to develop a small hydro site)

Kecepatan Spesifik Contoh: Diketahui debit dan head dari sebuah sumber air dan rpm kebutuhan dari generator. Hitunglah kecepatan spesifiknya. Hasilnya merupakan kriteria utama dalam pemilihan turbin. Kecepatan spesifik juga merupakan titik awal dari analisis desain dari sebuah turbin baru. Sekali kecepatan spesifik yang diinginkan diketahui, dimensi dasar dari bagian-bagian turbin dapat dihitung dengan mudah. Hukum Affinity mengijinkan keluaran turbin dapat diperkirakan berdasarkan dari test permodelan. Replika miniatur dari desain yang diusulkan, diameter sekitar satu kaki (0,3 m), dapat diuji dan hasil pengukuran laboratorium dapat digunakan sebagai kesimpulan dengan tingkat keakuratan yang tinggi. Hukum Affinity didapatkan dari penurunan yang membutuhkan persamaan antara test permodelan dan penggunaanya. Debit yang melalui turbin dikendalikan dengan katub yang besar atau pintu gerbang yang disusun diluar sekeliling pengarah turbin. Perubahan head dan debit dapat dilakukan dengan variasi bukaan pintu, akan menghasilkan diagram yang menunjukkan efisiensi turbin dengan kondisi yang berubah-ubah.

Putaran Liar Putaran liar turbin air adalah kecepatan saat debit maksimum dengan tanpa beban poros. Turbin didesain untuk bertahan dari gaya mekanis dengan kecepatan ini. Perusahaan akan memberikan putaran liar yang diijinkan.

Pemeliharaan

Pemeliharaan Sebuah turbin Francis dalam masa akhir penggunaanya, menunjukkan lubang kavitasi, retakan kelelahan dan kerusakan besar. Dapat dilihat bekas perbaikan sebelumnya dengan las stainless steel. Turbin didesain untuk bekerja dalam jangka waktu puluhan tahun dengan sangat sedikit pemeliharaan pada elemen utamanya, interval pemeriksaan total dilakukan dalam jangka waktu beberapa tahun. Pemeliharaan pada sudu, pengarah dan part lain yang bersentuhan dengan air termasuk pembersihan, pemeriksaan dan perbaikan part yang rusak. Keausan umumnya adalah lubang akibat kavitasi, retakan kelelahan dan pengikisan dari benda padat yang tercampur dalam air. Elemen baja diperbaiki dengan pengelasan, umumnya dengan las stainless steel. Area yang berbahaya dipotong atau digerinda, kemudian dilas sesuai dengan bentuk aslinya atau dengan profil yang diperkuat. Sudu turbin tua mungkin akan mempunyai banyak tambahan stainless steel hingga akhir penggunaannya. Prosedur pengelasan yang rumit mungkin digunakan untuk mendapatkan kualitas perbaikan terbaik. Elemen lainnya yang membutuhkan pemeriksaan dan perbaikan selama pemeriksaan total termasuk bantalan, kotak paking dan poros, motor servo, sistem pendingin untuk bantalan dan lilitan generator, cincin seal, elemen sambungan gerbang dan semua permukaan.

Pengaruh Pada lingkungan

Pengaruh Pada Lingkungan Turbin air mempunyai pengaruh positif dan negatif bagi lingkungan. Turbin adalah salah satu penghasil tenaga terbersih, menggantikan pembakaran bahan bakar fosil dan menghapuskan limbah nuklir. Turbin menggunakan energi terbarukan dan dedesain untuk beroperasi dalam jangka waktu puluhan tahun. Turbin memproduksi sumber energi listrik dunia dengan jumlah yang besar. Dalam sejarah turbin juga mempunyai konsekuensi negatif. Putaran sudu atau gerbang pengarah dari turbin air dapat mengganggu ekologi natural sungai, membunuh ikan, menghentikan migrasi dan menggangu mata pencaharian manusia. Contohnya, suku Indian Amerika di Pasific Northwest mempunyai mata pencaharian memancing ikan salmon, tapi pembangunan dam secara agresif menghancurkan jalan hidupnya. Hingga akhir abad 20, dapat dimungkinkan untuk membangun sistem pembangkit tenaga air yang mengalihkan ikan dan organisme lainnya dari saluran masuk turbin tanpa kerusakan atau kehilangan tenaga yang berarti. Sistem akan memerlukan sedikit pembersihan tetapi secara pada dasarnya lebih mahal untuk dibangun. Di Amerika Serikat sekarang menahan migrasi ikan adalah ilegal, sehingga tangga ikan harus disediakan oleh pembangun bendungan.

TIM PENYUSUN Galih Permadi Siwi (035214037) Indrawan Taufik (03524055) Ari Suryanto (035214061)