Kinematics in Two Dimension - Kinematika dalam Dua Dimensi -
Projectile Motion Gerak Peluru
Projectile Motion Gerak Peluru
Projectile Motion Gerak Peluru A projectile motion is a parabolic through which the velocity of any object has its vertical and horizontal components Horizontal component Vx0 = V0 cos Vx = Vx0 x = x0 + Vx0 t Constant Velocity
Projectile Motion Gerak Peluru A projectile motion is a parabolic through which the velocity of any object has both vertical and horizontal components Vertical component Vy0 = V0 sin Vy = Vy0 - gt + y = y0 + Vy0 t – ½ gt2 Constant Acceleration Vy2= Vy02 – 2g ( y – y0 ) +
Projectile Motion Gerak Peluru A movie stunt driver on a motor cycle speeds horizontally of a 50-m-high cliff. How fast must the motorcycle leave the cliff off to land on level ground below 90.0 m from the base of the cliff where the cameras are? Ignore the air resistance Seorang stunt man mengendarai motor saat untuk pengambilan gambar film dari tebing setinggi 50 m dari tanah. Berapakah kecepatan motor agar bisa mendarat pada jarak 90 meter dari titik tinggal landas tebing? Hambatan udara ditiadakan.
Projectile Motion Gerak Peluru
Projectile Motion Gerak Peluru A football is kicked at an angle of 37o with a velocity of 20 m/s. Calculate a) Maximum height, b) the time of travel before the football hits the ground, c) how far away it hits the ground, d) the velocity vector at the maximum height and e) the acceleration vector at the maximum height. Assume the ball leaves the foot at ground level, and ignore air resistance and rotation of the ball. Sebuah bola ditendang mengarah sudut 37o dengan kecepatan 20 m/s. Hitung a) tinggi maximum bola di udara, b) waktu total saat bola berada di udara dan sesaat sebelum mendarat, c) jarak bola mendarat dari titik tendang, d) Vektor kecepatan saat bola berada di titik tertinggi, dan e) vektor percepatan saat bola berada di titik tertinggi.
Projectile Motion Gerak Peluru Horizontal Range ( R ) 2 Vo2 R = sin θo cos θo g Vo2 R = sin 2θo g
Projectile Motion Gerak Peluru Horizontal Range ( R )
Uniform Circular Motion Gerak Melingkar Beraturan ω = angular speed V = absolute velocity ω
Uniform Circular Motion Gerak Melingkar Beraturan Average angular speed (ω) The rate at which its angular coordinate, the angular displacement θ, changes with time θf - θi rad/s ωav = t ω = 2πf ω = Angular speed = Angular frequency
Uniform Circular Motion Gerak Melingkar Beraturan Angular acceleration (α) The rate at which its angular speed changes with time ωf - ωi rad/s2 α = t
Uniform Circular Motion Gerak Melingkar Beraturan