3 Forecasting CHAPTER Manajemen Transportasi & Logistik

Slides:



Advertisements
Presentasi serupa
Developing Knowledge Management dalam perusahaan Week 10 – Pert 19 & 20 (Off Class Session)
Advertisements

Pengujian Hipotesis untuk Satu dan Dua Varians Populasi
3. Economic Returns to Land Resources: Theories of Land Rent
PEMOGRAMAN BERBASIS JARINGAN
Konsep Statement of Cash Flow dengan Menggunakan Metode Direct
ESTIMASI PENJUALAN DATA TIME SERIES - DEKOMPOSISI 1. ADDITIVE MODEL 2. MULTIPLICATIVE MODEL.
SOCIAL MEDIA Widianto Nugroho, S.Sn. |
TRIP GENERATION.
Program Keahlian I – SI By Antonius Rachmat C, S.Kom
Peta Kontrol (Untuk Data Variabel)
IT SEBAGAI ALAT UNTUK MENCIPTAKAN KEUNGGULAN KOMPETISI
Chapter Nine The Conditional.
IT Project Management Based on PMBOK
PERULANGANPERULANGAN. 2 Flow of Control Flow of Control refers to the order that the computer processes the statements in a program. –Sequentially; baris.
Introduction to Valuation :
Slide 3-1 Elmasri and Navathe, Fundamentals of Database Systems, Fourth Edition Revised by IB & SAM, Fasilkom UI, 2005 Exercises Apa saja komponen utama.
Information Distortion & Bullwhip Effect
Introduction to The Design & Analysis of Algorithms
Penerapan Fungsi Non-Linier
Principles of Marketing Fifth Canadian Edition Philip Kotler, Gary Armstrong, Peggy H. Cunningham.
MATERI 6 PERILAKU ORGANISASI
1 KOMPONEN PERUMUSAN PROGRAM KOMUNIKASI 1.Assesment - Focus the target audience 2.Planning - Target audience - Key of consumer benefit - Believe of the.
PROSES PADA WINDOWS Pratikum SO. Introduksi Proses 1.Program yang sedang dalam keadaan dieksekusi. 2.Unit kerja terkecil yang secara individu memiliki.
1. Objek dalam kalimat aktif menjadi subjek dalam kalimat pasif
Review Operasi Matriks
Chapter 2 ADVANCED MANAGEMENT ACCOUNTING
Ch. 7 TECHLOGY INTELLIGENCE. (T) Technical Intelligence Market Intelligence (M)
Jeff Howbert Introduction to Machine Learning Winter Classification Nearest Neighbor.
Pengantar Metode Penarikan Contoh dan Sebaran Penarikan Contoh
Ekonomi Manajerial dalam Perekonomian Global
Green Productivity Prof. Ir. Moses L. Singgih, MSc, PhD
Risk Management.
VALUING COMMON STOCKS Expected return : the percentage yield that an investor forecasts from a specific investment over a set period of time. Sometimes.
2-Metode Penelitian Dalam Psikologi Klinis
Implementing an REA Model in a Relational Database
Oleh: Dr. Sri Widati,S.Sos.,M.Si
Analysis of Variance (ANOVA)
Pendugaan Parameter part 2
METODE SAMPLING by Achmad Prasetyo, S.Si., M.M..
MEMORY Bhakti Yudho Suprapto,MT. berfungsi untuk memuat program dan juga sebagai tempat untuk menampung hasil proses bersifat volatile yang berarti bahwa.
3 nd Meeting Chemical Analysis Steps and issues STEPS IN CHEMICAL ANALYSIS 1. Sampling 2. Preparation 3. Testing/Measurement 4. Data analysis 2. Error.
Basisdata Pertanian. After completing this lesson, you should be able to do the following Identify the available group functions Describe the use of group.
1 Magister Teknik Perencanaan Universitas Tarumanagara General View On Graduate Program Urban & Real Estate Development (February 2009) Dr.-Ing. Jo Santoso.
2nd MEETING Assignment 4A “Exploring Grids” Assignment 4 B “Redesign Grids” Create several alternatives grid sysytem using the provided elements: (min.
Roundtable discussion on citizen engagement for good governance in East Indonesia diskusi keterlibatan penduduk untuk tata pemerintahan yang baik di Indonesia.
Activity – Based Management 31/10/2009Akuntansi Manajemen Lanjutan.
LOGO Manajemen Data Berdasarkan Komputer dengan Sistem Database.
We are in search of passionate and driven individual to become one of the few Management Associates who will be developed to become bright leaders in the.
Definisi VLAN Pemisahan jaringan secara logis yang dilakukan pada switch Pada tradisional switch, dalam satu switch menunjukkan satu segmentasi LAN.
MODELS OF PR SYIFA SA. Grunig's Four models of Public Relations Model Name Type of Communica tion Model Characteristics Press agentry/ publicity model.
GROUP 4. MORTALITAS Ketua: Prof. Budi Utomo Anggota:
Metodologi Penelitian dalam Bidang Informatika
3.1 © 2007 by Prentice Hall OVERVIEW Information Systems, Organizations, and Strategy.
THE EFFICIENT MARKETS HYPOTHESIS AND CAPITAL ASSET PRICING MODEL
1. 2 Work is defined to be the product of the magnitude of the displacement times the component of the force parallel to the displacement W = F ║ d F.
MAINTENANCE AND REPAIR OF RADIO RECEIVER Competency : Repairing of Radio Receiver.
Via Octaria Malau Transfer (Internal Transfers) Transfer (Transfers Internal) Select the account from which funds are to be transferred FROM and then select.
PENJUMLAHAN GAYA TUJUAN PEMBELAJARAN:
Bab 6 : Teori dan Estimasi Produksi
Web Teknologi I (MKB511C) Minggu 12 Page 1 MINGGU 12 Web Teknologi I (MKB511C) Pokok Bahasan: – Text processing perl-compatible regular expression/PCRE.
Berpikir sebagai seorang ahli ekonomi
Smoothing. Basic Smoothing Models Moving average, weighted moving average, exponential smoothing Single and Double Smoothing First order exponential smoothing.
PERAMALAN Oleh: Sri Hermawati.
Ukuran Akurasi Model Deret Waktu Manajemen Informasi Kesehatan
Rank Your Ideas The next step is to rank and compare your three high- potential ideas. Rank each one on the three qualities of feasibility, persuasion,
ENTREPRENEURSHIP Lecture No: 44 BY CH. SHAHZAD ANSAR
Xiong, et al. A survey of core and support activities of communicable disease surveillance systems at operating-level CDCs in China. BMC Public Health.
Lecture 8 Normal model.
Content Marketing Template
North Dakota Department of Public Instruction (ND DPI)
Transcript presentasi:

3 Forecasting CHAPTER Manajemen Transportasi & Logistik Rahmi Yuniarti,ST.,MT Anni Rahimah, SAB,MAB FIA - Prodi Bisnis Internasional Universitas Brawijaya

Pengelolaan Order Pesanan Permintaan Penawaran Negosiasi Kesepakatan Perjanjian

Manajemen Permintaan

What is Forecasting? FORECAST: A statement about the future value of a variable of interest such as demand. Forecasts affect decisions and activities throughout an organization Accounting, finance Human resources Marketing MIS Operations Product / service design

Uses of Forecasts Accounting Cost/profit estimates Finance Cash flow and funding Human Resources Hiring/recruiting/training Marketing Pricing, promotion, strategy MIS IT/IS systems, services Operations Schedules, MRP, workloads Product/service design New products and services

Common in all forecasts Assumes causal system past ==> future Forecasts rarely perfect because of randomness Forecasts more accurate for groups vs. individuals Forecast accuracy decreases as time horizon increases I see that you will get an A this semester.

Peramalan Permintaan

Steps in the Forecasting Process Step 1 Determine purpose of forecast Step 2 Establish a time horizon Step 3 Select a forecasting technique Step 4 Gather and analyze data Step 5 Prepare the forecast Step 6 Monitor the forecast “The forecast”

Forecasting Models

Model Differences Qualitative – incorporates judgmental & subjective factors into forecast. Time-Series – attempts to predict the future by using historical data. Causal – incorporates factors that may influence the quantity being forecasted into the model

Qualitative Forecasting Models Delphi method Iterative group process allows experts to make forecasts Participants: decision makers: 5 -10 experts who make the forecast staff personnel: assist by preparing, distributing, collecting, and summarizing a series of questionnaires and survey results respondents: group with valued judgments who provide input to decision makers

Qualitative Forecasting Models (cont) Jury of executive opinion Opinions of a small group of high level managers, often in combination with statistical models. Result is a group estimate. Sales force composite Each salesperson estimates sales in his region. Forecasts are reviewed to ensure realistic. Combined at higher levels to reach an overall forecast. Consumer market survey. Solicits input from customers and potential customers regarding future purchases. Used for forecasts and product design & planning

Metode Peramalan Deret Waktu (Time Series Methods) Teknik peramalan yang menggunakan data-data historis penjualan beberapa waktu terakhir dan mengekstrapolasinya untuk meramalkan penjualan di masa depan Peramalan deret waktu mengasumsikan pola kecenderungan pemasaran akan berlanjut di masa depan. Sebenarnya pendekatan ini cukup naif, karena mengabaikan gejolak kondisi pasar dan persaingan

Langkah-langkah Peramalan Time Series (Deret Waktu) Kumpulkan data historis penjualan Petakan dalam diagram pencar (scatter diagram) Periksa pola perubahan permintaan Identifikasi faktor pola perubahan permintaan Pilih metode peramalan yang sesuai Hitung ukuran kesalahan peramalan Lakukan peramalan untuk satu atau beberapa periode mendatang

UKURAN AKURASI HASIL PERAMALAN Ukuran akurasi hasil peramalan yang merupakan ukuran kesalahan peramalan merupakan ukuran tentang tingkat perbedaan antara hasil peramalan dengan permintaan yang sebenarnya terjadi. Ukuran yang biasa digunakan, yaitu: Rata-rata Deviasi Mutlak (Mean Absolute Deviation = MAD) Rata-Rata Kuadrat Kesalahan (Mean Square Error = MSE) Rata-rata Peramalan Kesahalan Absolut (Mean Absolute Percent Age Error = MAPE)

UKURAN AKURASI HASIL PERAMALAN Rata-rata Deviasi Mutlak (Mean Absolute Deviation = MAD) MAD merupakan rata-rata kesalahan mutlak selama periode tertentu tanpa memperhatikan apakah hasil peramalan besar atau lebih kecil dibandingkan kenyataannya. Rata-Rata Kuadrat Kesalahan (Mean Square Error= MSE) MSE dihitung dengan menjumlahkan kuadrat semua kesalahan peramalan pada setiap periode dan membaginya dengan jumlah periode peramalan. Rata-rata Peramalan Kesahalan Absolut (Mean Absolute Percent Age Error + MAPE) MAPE merupakan kesalahan relatif. MAPE menyatakan persentase kesalahan hasil peramalan terhadap permintaan aktual selama periode tertentu yang akan memberikan informasi persentase kesalahan terlalu tinggi atau terlalu rendah.

Forecast Error Bias - The arithmetic sum of the errors Mean Square Error - Similar to simple sample variance MAD - Mean Absolute Deviation MAPE – Mean Absolute Percentage Error

Example

Controlling the Forecast Control chart A visual tool for monitoring forecast errors Used to detect non-randomness in errors Forecasting errors are in control if All errors are within the control limits No patterns, such as trends or cycles, are present

Controlling the forecast

Quantitative Forecasting Models Time Series Method Naïve Whatever happened recently will happen again this time (same time period) The model is simple and flexible Provides a baseline to measure other models Attempts to capture seasonal factors at the expense of ignoring trend

week.... Now, next week we should sell.... Naive Forecasts Uh, give me a minute.... We sold 250 wheels last week.... Now, next week we should sell.... The forecast for any period equals the previous period’s actual value.

Naïve Forecast

Naïve Forecast Graph

Naive Forecasts Simple to use Virtually no cost Quick and easy to prepare Easily understandable Can be a standard for accuracy Cannot provide high accuracy

Techniques for Averaging Moving average Weighted moving average Exponential smoothing

MAn = n Ai  Moving Averages Moving average – A technique that averages a number of recent actual values, updated as new values become available. The demand for wheels in a wheel store in the past 5 weeks were as follows. Compute a three-period moving average forecast for demand in week 6. 83 80 85 90 94 MAn = n Ai i = 1 

Moving average & Actual demand

Moving Averages

Moving Averages Forecast

Moving Averages Graph

Moving Averages Weighted moving average – More recent values in a series are given more weight in computing the forecast. Assumes data from some periods are more important than data from other periods (e.g. earlier periods). Use weights to place more emphasis on some periods and less on others. Example: For the previous demand data, compute a weighted average forecast using a weight of .40 for the most recent period, .30 for the next most recent, .20 for the next and .10 for the next. If the actual demand for week 6 is 91, forecast demand for week 7 using the same weights.

Weighted Moving Average

Weighted Moving Average

Exponential Smoothing ES didefinisikan sebagai: Keterangan: Ft+1 = Ramalan untuk periode berikutnya Dt = Demand aktual pada periode t Ft = Peramalan yg ditentukan sebelumnya untuk periode t a = Faktor bobot a besar, smoothing yg dilakukan kecil a kecil, smoothing yg dilakukan semakin besar a optimum akan meminimumkan MSE, MAPE

Exponential Smoothing Ft = Ft-1 + (At-1 - Ft-1) Weighted averaging method based on previous forecast plus a percentage of the forecast error A-F is the error term,  is the % feedback

Exponential Smoothing Data

Exponential Smoothing

Exponential Smoothing

Trend , Seasonality Analysis Time Series Methods Trend , Seasonality Analysis Trend - long-term movement in data Cycle – wavelike variations of more than one year’s duration Seasonality - short-term regular variations in data Random variations - caused by chance

Pola Kecenderungan Data Historis Penjualan

Techniques for Trend Develop an equation that will suitably describe trend, when trend is present. The trend component may be linear or nonlinear We focus on linear trends

Common Nonlinear Trends Parabolic Exponential Growth

Linear Trend Equation Ft = a + bt Ft = Forecast for period t t = Specified number of time periods a = Value of Ft at t = 0 b = Slope of the line

Example Sales for over the last 5 weeks are shown below: Plot the data and visually check to see if a linear trend line is appropriate. Determine the equation of the trend line Predict sales for weeks 6 and 7.

Line chart

Calculating a and b b = n (ty) - t y 2 ( t) a 

Linear Trend Equation Example

Linear Trend Calculation Ft = 143.5 + 6.3t a = 812 - 6.3(15) 5 b 5 (2499) 15(812) 5(55) 225 12495 12180 275 6.3 143.5

Linear Trend plot

“Tidak ada Keberanian Tanpa Kesabaran.. “