Metode Statistika Pertemuan X-XI

Slides:



Advertisements
Presentasi serupa
PENGUJIAN HIPOTESIS Pertemuan 10.
Advertisements

Pengujian Hipotesis (Satu Sampel)
METODE STATISTIKA Pertemuan III DISTRIBUSI SAMPLING.
Pengujian Hipotesis.
Metode Statistika Pertemuan VIII-IX
Metode Statistika Pertemuan X-XI
PENGUJIAN HIPOTESIS SAMPEL BESAR
9 Uji Hipotesis untuk Satu Sampel.
Pertemuan 6 UJI HIPOTESIS
Uji Hipotesis.
PENGUJIAN HIPOTESIS SAMPEL KECIL
Pengujian Hipotesis.
Bab X Pengujian Hipotesis
MK. PENGELOLAAN DATA MUTU PANGAN
Metode Statistika Pertemuan VIII-IX
10 Uji Hipotesis untuk Dua Sampel.
STATISTIKA INFERENSI : UJI HIPOTESIS (SAMPLE TUNGGAL)
STATISTIKA INFERENSI : UJI HIPOTESIS (SAMPEL GANDA)
Pengujian Hipotesis.
PENGUJIAN HYPOTESIS Tujuan Pembelajaran : Memahami makna hypotesis
STATISTIK UJI ‘T’ DAN UJI ‘Z’
Pengujian Hipotesis Achmad Tjachja N, Ir.,MS.
HIPOTESA : kesimpulan sementara
Pengujian Hipotesis 2 rata-rata.
Statistika Inferensia: Pengujian Hipotesis
Pengujian Hypotesis - 3 Tujuan Pembelajaran :
PENGUJIAN HIPOTESIS Pertemuan 11.
UJI HIPOTESIS Dalam kegiatan penelitian, setelah hipotesis di rumuskan, maka keterlibatan statistik adalah sebagai alat untuk menganalisis data guna.
Ekonometrika Metode-metode statistik yang telah disesuaikan untuk masalah-maslah ekonomi. Kombinasi antara teori ekonomi dan statistik ekonomi.
PENGUJIAN HIPOTESA DR. IR. WAHYU WIDODO, MS.
PENGUJIAN HIPOTESA Probo Hardini stapro.
HIPOTESIS & UJI VARIANS
BAB V PENGUJIAN HIPOTESIS
Estimasi & Uji Hipotesis
PENGUJIAN HIPOTESIS SAMPEL BESAR
PENGUJIAN HIPOTESIS SAMPEL BESAR
Statistika Inferensi : Estimasi Titik & Estimasi Interval
Uji Hipotesis.
STATISTIKA EKONOMI II PERTEMUAN KE- 6 Pengujian Hipotesis 20/08/2016.
TEORI PENDUGAAN (TEORI ESTIMASI)
Pengujian Hipotesis mengenai Rataan Populasi
UJI HIPOTESIS Tujuan : menentukan apakah dugaan tentang karakteristik suatu populasi didukung kuat oleh informasi yang diperoleh dari data observasi atau.
Pengujian Hipotesis Oleh : Enny Sinaga.
Pengujian Pembandingan Rata-Rata Dua Populasi
Metode Statistika Pertemuan X-XI
UJI HIPOTESIS Septi Fajarwati, M. Pd.
UJI HIPOTESIS (2).
Uji Hipotesis (1).
PENGUJIAN HIPOTESIS Hipotesis adalah jawaban sementara sebelum percobaan dilakukan yang didasarkan pada studi literatur. Hipotesis statistik dibedakan.
STATISTIKA DALAM KIMIA ANALITIK
Metode Statistika Pertemuan VIII-IX
Pengujian Hipotesis Kuswanto, 2007.
Metode Statistika Pertemuan X-XI
Resista Vikaliana, S.Si.MM
STATISTIKA INFERENSI : UJI HIPOTESIS (SAMPEL TUNGGAL)
BAB 14 PENGUJIAN HIPOTESIS SAMPEL KECIL
HIPOTESIS Hipotesis Penelitian = Hipotesis Konseptual adalah pernyataan yang merupakan jawaban sementara terhadap suatu masalah yang masih harus diuji.
Pengujian Hipotesis mengenai Rataan Populasi
STATISTIKA INFERENSI STATISTIK
Pengujian Hipotesis Kuliah 10.
Pengujian Pembandingan Rata-Rata Dua Populasi
Pengujian Hipotesis Achmad Tjachja N, Ir.,MS.
PENGUJIAN HIPOTESIS.
Sebaran Penarikan Contoh
STATISTIKA 2 3. Pendugaan Parameter I OLEH: RISKAYANTO
Analisis Multivariat Program S2 Matematika Semester Genap 2011/2012
TEORI PENDUGAAN (TEORI ESTIMASI)
UJI HIPOTESIS Indah Mulyani.
UJI HIPOTESIS.
Pendugaan Parameter. Populasi : Parameter Sampel : Statistik Statistik merupakan PENDUGA bagi parameter populasi PENDUGA TAK BIAS DAN MEMPUNYAI RAGAM.
Transcript presentasi:

Metode Statistika Pertemuan X-XI Statistika Inferensia: Pengujian Hipotesis

Pengujian Hipotesis HIPOTESIS  Suatu pernyataan / anggapan yang mempunyai nilai mungkin benar / salah atau suatu pernyataan /anggapan yang mengandung nilai ketidakpastian CONTOH Besok akan turun hujan  mungkin benar/salah Penambahan pupuk meningkatkan produksi  mungkin benar/salah Varietas A lebih baik dibandingkan dengan varietas B  mungkin benar/salah dll

HIPOTESIS statistik dinyatakan dalam dua bentuk yaitu: H0 (hipotesis nol): suatu pernyataan / anggapan yang ingin kita tolak H1 (hipotesis tandingan): pernyataan lain yang akan diterima jika H0 ditolak Pengambilan keputusan akan memunculkan dua jenis kesalahan yaitu: Salah jenis I (Error type I) : kesalahan akibat menolak H0 padahal H0 benar Salah jenis II (Error type II) : kesalahan akibat menerima H0 padahal H1 benar Besarnya peluang kesalahan dapat ini dapat dihitung sebagai berikut: P(salah jenis I) = P(tolak H0/H0 benar) =  P(salah jenis II) = P(terima H0/H1 benar) = 

Rangkuman H0 benar H0 salah Tolak H0 Peluang salah jenis I (Taraf nyata; ) Kuasa pengujian (1-) Terima H0 Tingkat kepercayaan (1-) Peluang salah jenis II ()

CONTOH Sampel diambil secara acak dari populasi normal(;2 = 9), berukuran 25. Hipotesis yang akan diuji, H0 :  = 15 H1 :  = 10 Tolak H0 jika rata-rata kurang dari atau sama dengan 12.5 Berapakah besarnya kesalahan jenis I dan II ? Jawab: P(salah jenis I) = P(tolak H0/ = 15) = P(z  (12.5-15)/3/25)) = P(z  - 4.167 )  0 P(salah jenis II) = P(terima H0/ = 10) = P(z  (12.5-10)/3/25)) = P(z  4.167 ) = 1 - P(z  4.167 )  0

Beberapa langkah yang perlu diperhatikan dalam pengujian hipotesis: (1) Tuliskan hipotesis yang akan diuji Ada dua jenis hipotesis: Hipotesis sederhana Hipotesis nol dan hipotesis alternatif sudah ditentukan pada nilai tertentu H0 :  = 0 vs H1 :  = 1 H0 : 2 = 02 vs H1 : 2 = 12 H0 : P = P0 vs H1 : P = P1 Hipotesis majemuk Hipotesis nol dan hipotesis alternatif dinyatakan dalam interval nilai tertentu b.1. Hipotesis satu arah H0 :   0 vs H1 :  < 0 H0 :   0 vs H1 :  > 0 b.2. Hipotesis dua arah H0 :  = 0 vs H1 :   0

(3). Hitung statistik ujinya (2). Deskripsikan data sampel yang diperoleh (hitung rataan, ragam, standard error dll) (3). Hitung statistik ujinya Statistik uji yang digunakan sangat tergantung pada sebaran statistik dari penduga parameter yang diuji CONTOH H0:  = 0 maka maka statistik ujinya bisa t-student atau normal baku (z) atau (4). Tentukan batas kritis atau daerah penolakan H0 Daerah penolakan H0 sangat tergantung dari bentuk hipotesis alternatif (H1) H1:  < 0  Tolak H0 jika th < -t(; db)(tabel) H1:  > 0  Tolak H0 jika th > t(; db)(tabel) H1:   0  Tolak H0 jika |th | > t(/2; db)(tabel) (5). Tarik kesimpulan

Pengujian Nilai Tengah Populasi X~N(,2) Sampel Acak Uji  Kasus Satu Sample Suatu sampel acak diambil dari satu populasi Normal berukuran n Tujuannya adalah menguji apakah parameter  sebesar nilai tertentu, katakanlah 0

Jika ragam populasi (2) diketahui : Hipotesis yang dapat diuji: Hipotesis satu arah H0 :   0 vs H1 :  < 0 H0 :   0 vs H1 :  > 0 Hipotesis dua arah H0 :  = 0 vs H1 :   0 Statistik uji: Jika ragam populasi (2) diketahui : Jika ragam populasi (2) tidak diketahui :

Daerah kritis pada taraf nyata () Besarnya taraf nyata sangat tergantung dari bidang yang sedang dikaji Daerah penolakan H0 sangat tergantung dari bentuk hipotesis alternatif (H1) H1:  < 0  Tolak H0 jika th < -t(; db=n-1)(tabel) H1:  > 0  Tolak H0 jika th > t(; db=n-1)(tabel) H1:   0  Tolak H0 jika |th | > t(/2; db=n-1)(tabel) Atau, jika nilai peluang nyata (p) dihitung, H1:  < 0  p=p(t<th) atau p=p(z<zh), Tolak H0 jika p<  H1:  > 0  p=p(t>th) atau p=p(z>zh), Tolak H0 jika p<  H1:   0  p=p(|t|>|th|) atau p=p(|z|<|zh|), Tolak H0 jika p< /2 Tarik Kesimpulan

Ilustrasi Batasan yang ditentukan oleh pemerintah terhadap emisi gas CO kendaraan bermotor adalah 50 ppm. Sebuah perusahaan baru yang sedang mengajukan ijin pemasaran mobil, diperiksa oleh petugas pemerintah untuk menentukan apakah perusahan tersebut layak diberikan ijin. Sebanyak 20 mobil diambil secara acak dan diuji emisi CO-nya. Dari data yang didapatkan, rata-ratanya adalah 55 dan ragamnya 4.2. dengan menggunakan taraf nyata 5%, layakkan perusahaan tersebut mendapat ijin ?

Daerah kritis pada taraf nyata 0.05 Kesimpulan: Hipotesis yang diuji: H0 :  <= 50 vs H1 :  > 50 Statistik uji: th= (55-50)/(4.2/20)=10.91 Daerah kritis pada taraf nyata 0.05 Tolak Ho jika th > t(0,05;db=19) = 1,729 Kesimpulan: Tolak H0, artinya emisi gas CO kendaraan bermotor yang akan dipasarkan oleh perusahaan tersebut melebihi batasan yang ditentukan oleh pemerintah sehingga perusahaan tersebut tidak layak memperoleh ijin untuk memasarkan mobilnya.

Perbandingan Nilai Tengah Dua Populasi Populasi I X~N(1,12) Sampel I (n1) Populasi II X~N(2,22) Sampel II (n2) Acak dan saling bebas 1 ??? 2 Kasus Dua Sample Saling Bebas Setiap populasi diambil sampel acak berukuran tertentu (bisa sama, bisa juga tidak sama) Pengambilan kedua sampel saling bebas Tujuannya adalah menguji apakah parameter 1 sama dengan parameter 2

Hipotesis Statistik uji: Hipotesis satu arah: Hipotesis dua arah: H0: 1- 2 0 vs H1: 1- 2 <0 H0: 1- 2  0 vs H1: 1- 2 >0 Hipotesis dua arah: H0: 1- 2 =0 vs H1: 1- 2 0 Statistik uji: Jika ragam kedua populasi diketahui katakan 12 dan 22 : Jika ragam kedua populasi tidak diketahui:

Daerah kritis pada taraf nyata () Pada prinsipnya sama dengan kasus satu sampel, dimana daerah penolakan H0 sangat tergantung dari bentuk hipotesis alternatif (H1) H1: H1: 1- 2 <0  Tolak H0 jika th < -t(; db)(tabel) H1: 1- 2 >0  Tolak H0 jika th > t(; db)(tabel) H1: 1- 2 0  Tolak H0 jika |th | > t(/2; db)(tabel) Tarik Kesimpulan

Ilustrasi Dua buah perusahaan yang saling bersaing dalam industri kertas karton saling mengklaim bahwa produknya yang lebih baik, dalam artian lebih kuat menahan beban. Untuk mengetahui produk mana yang sebenarnya lebih baik, dilakukan pengambilan data masing-masing sebanyak 10 lembar, dan diukur berapa beban yang mampu ditanggung tanpa merusak karton. Datanya adalah : Hitunglah rataan dan ragam dari kedua data perusahaan tersebut. Ujilah karton produksi mana yang lebih kuat dengan asumsi ragam kedua populasi berbeda, gunakan taraf nyata 10% Persh. A 30 35 50 45 60 25 40 Persh. B 55 65

Jawab: Rata-rata dan ragam kedua sampel: Perbandingan kekuatan karton Hipotesis: H0: 1= 2 vs H1: 12

Daerah kritis pada taraf nyata 10%: Kesimpulan: Statistik uji: (ragam populasi tidak diketahui dan diasumsikan 12  12 ) Daerah kritis pada taraf nyata 10%: Tolak H0 jika |th| > t(0,05;17) = 1,740 Kesimpulan: Tolak H0, artinya kekuatan karton kedua perusahaan berbeda nyata pada taraf nyata 10%. Diduga karton yang diproduksi oleh perusahaan B lebih kuat daripada karton A

Perbandingan Nilai Tengah Dua Populasi Populasi I X~N(1,12) Sampel I (n) Populasi II X~N(2,22) Sampel II Acak dan berpasangan 1 ??? 2 Pasangan 1 Pasangan … Pasangan n Kasus Dua Sample Saling Berpasangan Setiap populasi diambil sampel acak berukuran n (wajib sama) Pengambilan kedua sampel berpasangan, ada pengkait antar kedua sampel (bisa waktu, objek, tempat, dll) Tujuannya adalah menguji apakah parameter 1 sama dengan parameter 2

Statistik uji: Gunakan t atau z jika ukuran contoh n besar Hipotesis Hipotesis satu arah: H0: 1- 2 0 vs H1: 1- 2 <0 atau H0: D 0 vs H1: D<0 H0: 1- 2  0 vs H1: 1- 2 >0 atau H0: D  0 vs H1: D>0 Hipotesis dua arah: H0: 1- 2 =0 vs H1: 1- 2 0 atau H0: D = 0 vs H1: D0 Statistik uji: Gunakan t atau z jika ukuran contoh n besar Dimana d adalah simpangan antar pengamatan pada sampel satu dengan sampel 2 Daerah Kritis: (lihat kasus satu sampel) Tarik Kesimpulan Pasangan 1 2 3 … n Sampel 1 (X1) x11 x12 x13   x1n Sampel 2 (X2) x21 x22 x23 x2n D = (X1-X2) d1 d2 d3 dn

Ilustrasi Suatu klub kesegaran jasmani ingin mengevaluasi program diet, kemudian dipilih secara acak 10 orang anggotanya untuk mengikuti program diet tersebut selama 3 bulan. Data yang diambil adalah berat badan sebelum dan sesudah program diet dilaksanakan, yaitu: Apakah program diet tersebut dapat mengurangi berat badan minimal 5 kg? Lakukan pengujian pada taraf nyata 5%! Berat Badan Peserta 1 2 3 4 5 6 7 8 9 10 Sebelum (X1) 90 89 92 91 93 Sesudah (X2) 85 86 87 D=X1-X2

H0 : D  5 vs H1 : D < 5 Jawab: Karena kasus ini merupakan contoh berpasangan, maka: Hipotesis: H0 : D  5 vs H1 : D < 5 Deskripsi: Statistik uji:

Daerah kritis pada =5% Kesimpulan: Tolak H0, jika th < -t(=5%,db=9)=-1.833 Kesimpulan: Terima H0, artinya program diet tersebut dapat mengurangi berat badan minimal 5 kg