KONSEP DASAR TERMODINAMIKA

Slides:



Advertisements
Presentasi serupa
Menggambarkan Data: Tabel Frekuensi, Distribusi Frekuensi, dan Presentasi Grafis Chapter 2.
Advertisements

Teori Graf.
Pengujian Hipotesis untuk Satu dan Dua Varians Populasi
Algoritma & Pemrograman #10
3. Economic Returns to Land Resources: Theories of Land Rent
TRIP GENERATION.
Heat Insulation and Sound Insulation Displays
Materi Analisa Perancangan System.
Peta Kontrol (Untuk Data Variabel)
Bulan maret 2012, nilai pewarnaan :
EKO NURSULISTIYO.  Perhatikan gambar 11 a, perahu dikenai oleh ombak dari arah kanan misalkan setiap 4 sekon dalam keadaan perahu diam. Dalam keadaan.
Kinematics in Two Dimension - Kinematika dalam Dua Dimensi -
IT SEBAGAI ALAT UNTUK MENCIPTAKAN KEUNGGULAN KOMPETISI
1 Pertemuan 21 Pompa Matakuliah: S0634/Hidrologi dan Sumber Daya Air Tahun: 2006 Versi: >

Slide 3-1 Elmasri and Navathe, Fundamentals of Database Systems, Fourth Edition Revised by IB & SAM, Fasilkom UI, 2005 Exercises Apa saja komponen utama.
BAB II KARAKTERISTIK THERMODINAMIKA
Introduction to The Design & Analysis of Algorithms
IF-ITB/SAS/25Aug2003 IF7074 – Bagian Pertama Page 1 IF 7047 Kewirausahaan Teknologi Informasi Bagian Pertama: 1.1. Entrepreneurship, entrepreneur, dan.
Artificial Intelligence
PROSES PADA WINDOWS Pratikum SO. Introduksi Proses 1.Program yang sedang dalam keadaan dieksekusi. 2.Unit kerja terkecil yang secara individu memiliki.
1. Objek dalam kalimat aktif menjadi subjek dalam kalimat pasif
Review Operasi Matriks
Applications of Matrix and Linear Transformation in Geometric and Computational Problems by Algebra Research Group Dept. of Mathematics Course 2.
Functions (Fungsi) Segaf, SE.MSc. Definition “suatu hubungan dimana setiap elemen dari wilayah saling berhubungan dengan satu dan hanya satu elemen dari.
Bilqis1 Pertemuan bilqis2 Sequences and Summations Deret (urutan) dan Penjumlahan.
Menjelaskan sifat – sifat komponen elektronika aktif dan pasif
Risk Management.
VALUING COMMON STOCKS Expected return : the percentage yield that an investor forecasts from a specific investment over a set period of time. Sometimes.
2-Metode Penelitian Dalam Psikologi Klinis
Unit Operation and Process Material and Energy Balance
Implementing an REA Model in a Relational Database
Pertemuan 3 Menghitung: Nilai rata-rata (mean) Modus Median
PENGUKURAN TEGANGAN AC
MEMORY Bhakti Yudho Suprapto,MT. berfungsi untuk memuat program dan juga sebagai tempat untuk menampung hasil proses bersifat volatile yang berarti bahwa.
Kinematics in One Dimension - Kinematika dalam Satu Dimensi -
3 nd Meeting Chemical Analysis Steps and issues STEPS IN CHEMICAL ANALYSIS 1. Sampling 2. Preparation 3. Testing/Measurement 4. Data analysis 2. Error.
TERMOKIMIA (Thermochemistry)
1 Magister Teknik Perencanaan Universitas Tarumanagara General View On Graduate Program Urban & Real Estate Development (February 2009) Dr.-Ing. Jo Santoso.
2nd MEETING Assignment 4A “Exploring Grids” Assignment 4 B “Redesign Grids” Create several alternatives grid sysytem using the provided elements: (min.
Mari Kita Lihat Video Berikut ini.
LOGO Manajemen Data Berdasarkan Komputer dengan Sistem Database.
AUSTRALIA INDONESIA PARTNERSHIP FOR EMERGING INFECTIOUS DISEASES Excel tingkat menengah – Bagan (lanjutan) Location Date Name.
Organogenesis & Embriogenesis
PEMROGRAMAN PPBD (UAS) SEBELUM MELANGKAH KE TAHAP SELANJUTNYA BERDOA DULU BIAR LANCAR DAN GA EROR
Linked List dan Double Linked List
ITK-233 Termodinamika Teknik Kimia I
Definisi VLAN Pemisahan jaringan secara logis yang dilakukan pada switch Pada tradisional switch, dalam satu switch menunjukkan satu segmentasi LAN.
Amortization & Depresiasi
3.1 © 2007 by Prentice Hall OVERVIEW Information Systems, Organizations, and Strategy.
Contentment Philippians 4: Contentment What does it mean to be content? What does it mean to be content? Are you a content person? Are you a content.
THE EFFICIENT MARKETS HYPOTHESIS AND CAPITAL ASSET PRICING MODEL
Situasi Terkini tentang Penelitian dan Pelaksanaan Test danTreat di 28 Oktober 2014 Lecture Series Pusat Penelitian HIV dan AIDS.
1. 2 Work is defined to be the product of the magnitude of the displacement times the component of the force parallel to the displacement W = F ║ d F.
PERSAMAAN DAN PERTIDAKSAMAAN
Romans 1: Romans 1:16-17 New Living Translation (NLT) 16 For I am not ashamed of this Good News about Christ. It is the power of God at work, saving.
PENJUMLAHAN GAYA TUJUAN PEMBELAJARAN:
© 2007 Cisco Systems, Inc. All rights reserved.Cisco Public ITE PC v4.0 Chapter 1 1 Pengalamatan Jaringan – IPv4 Dosen Pengampu: Resi Utami Putri, S.Kom.,
The intensive state of a PVT system containing N chemical species and  phases in equilibrium is characterized by the intensive variables, temperature.
TCP, THREE-WAY HANDSHAKE, WINDOW
Retrosintetik dan Strategi Sintesis
Web Teknologi I (MKB511C) Minggu 12 Page 1 MINGGU 12 Web Teknologi I (MKB511C) Pokok Bahasan: – Text processing perl-compatible regular expression/PCRE.
Made by: Febri, Andrew, Erina, Leon, Luvin, Jordy
FISIKA DASAR By: Mohammad Faizun, S.T., M.Eng. Head of Manufacture System Laboratory Mechanical Engineering Department Universitas Islam Indonesia.
Lecture 2 Introduction to C# - Object Oriented Sandy Ardianto & Erick Pranata © Sekolah Tinggi Teknik Surabaya 1.
USAHA DAN ENERGI ENTER Klik ENTER untuk mulai...
Thermodynamics.
KONSEP DASAR TERMODINAMIKA AGUS HARYANTO FEBRUARI 2010.
Lecture 7 Thermodynamic Cycles
KONSEP DASAR TERMODINAMIKA
Transcript presentasi:

KONSEP DASAR TERMODINAMIKA AGUS HARYANTO FEBRUARI 2010

THERMO vs. HEAT TRANSFER Thermodynamics stems from the Greek words therme (heat) and dynamis (power or motion), which is most descriptive of the early efforts to convert heat into power. Today thermodynamics is broadly interpreted to include all aspects of energy and energy transformations, including power generation, refrigeration, and relationships among the properties of matter. Heat transfers the science that deals with the determination of the rates of such energy transfer.

THERMO vs. HEAT TRANSFER (cont) Thermodynamics membicarakan sistem keseimbangan (equilibrium), bisa digunakan untuk menaksir besarnya energi yang diperlukan untuk mengubah suatu sistem keseimbangan, tetapi tidak dapat dipakai untuk menaksir seberapa cepat (laju) perubahan itu terjadi karena selama proses sistem tidak berada dalam keseimbangan. Heat Transfer tidak hanya menerangkan bagaimana energi itu dihantarkan, tetapi juga menaksir laju penghantaran energi. Inilah yang membedakan Heat Transfer dengan thermodinamika.

APLIKASI Tubuh manusia Meniup kopi panas Perkakas elektronik (sirip, heat sink) Refrigerator (AC, Kulkas) Mobil (siklus engine, sirip, radiator) Pembangkit listrik (turbin, boiler) Industri (penyulingan, pendinginan, pengeringan, dll).

DIMENSI dan SATUAN Dimensi (M,L,T,θ)  homogen Satuan : SI Units (m, s, kg, K) Kesalahan umum: 1. Tidak paham homogenitas 2. Usaha minimal, kurang latihan 3. Tidak terampil melakukan konversi satuan Trik: perhitungan harus menyertakan satuan

SECONDARY UNITS Secondary units can be formed by combinations of primary units. Example: F = m.a P = F/A

SISTEM vs. LINGKUNGAN A system is defined as a quantity of matter or a region in space chosen for study. The mass or region outside the system is called the surroundings. The real or imaginary surface that separates the system from its surroundings is called the boundary

CLOSSED vs. OPEN SYSTEMS Closed system (= control mass): Mass can’t cross the boundary, but energy can. Volume of a closed system may change. Special case, if no energy cross the boundary, that system is called an isolated system.

CLOSSED SYSTEM A closed system with a moving boundary.

OPEN vs. CLOSSED SYSTEMS Open system (= control volume) is a properly selected region in space. It usually encloses a device that involves mass flow such as a compressor, turbine, or nozzle. Both mass and energy can cross the boundary of a control volume. The boundaries of a control volume are called a control surface, and they can be real or imaginary.

OPEN SYSTEM

OPEN SYSTEM Open system (= control volume) with one inlet and one outlet (exit) and a real boundary.

SIFAT-SIFAT SISTEM TERMODINAMIKA Any characteristic of a system is called a property. Some familiar properties are pressure P, temperature T, volume V, and mass m. The list can be extended to include less familiar ones such as viscosity, thermal conductivity, modulus of elasticity, thermal expansion coefficient, electric resistivity, and even velocity and elevation. Intensive properties are those that are independent of the mass of a system, such as temperature, pressure, and density. Extensive properties are those whose values depend on the size—or extent—of the system. Extensive properties per unit mass are called specific properties (specific volume (v = V/m), specific energy (e = E/m).

SIFAT INTENSIF vs. EKSTENSIF TUGAS (dikumpul Senin) : Sebuah apel dibelah dua. Buatlah daftar sifat intensif dan ekstensifnya Criterion to differentiate intensive and extensive properties.

SIFAT-SIFAT SISTEM PENTING Densitas atau massa jenis: masa per satuan volume Volume spesifik, kebalikan dari densitas: volume per satuan masa (m3/kg) Densitas relatif atau specific gravity: nisbah densitas suatu substansi dengan densitas substansi standar pada suhu tertentu (biasanya air pada 4oC di mana  = 1000 kg/m3)

ENERGY SISTEM TERMODINAMIKA BENTUK ENERGI: 1. Energi Kinetik (KE)  2. Energi Potensial (PE)  PE = mgh 3. Energi dakhil atau Internal Energy (U) ENERGI TOTAL: E = U + KE + PE e = u + ke + pe (per satuan massa)

POSTULAT KEADAAN All properties (can be measured or calculated) completely describes the condition, or the state, of the system. At a given state, all the properties of a system have fixed values. If the value of even one property changes, the state will change to a different one. The number of properties required to fix the state of a system is given by the state postulate: The state of a simple compressible system is completely specified by two independent, intensive properties.

PROSES dan SIKLUS Any change that a system undergoes from one equilibrium state to another is called a process The series of states through which a system passes during a process is called the path (lintasan) of the process.

MACAM-MACAM PROSES Proses isotermal: proses pada suhu T konstan. Proses isobaris: proses pada tekanan P konstan. Proses isokhoris (isometris): proses pada volume spesifik  konstan. Proses adiabatik: proses di mana tidak terjadi pertukaran kalor dengan lingkungan. Proses isentropik: proses pada entropi S konstan.

STEADY-FLOW PROCESS The terms steady and uniform are used frequently in engineering, and thus it is important to have a clear understanding of their meanings. The term steady implies no change with time. The opposite of steady is unsteady, or transient. The term uniform, however, implies no change with location over a specified region.

PROSES dan SIKLUS A system undergoes a cycle if it returns to its initial state at the end of the process. Siklus dengan 2 lintasan Siklus dengan 4 lintasan

TEKANAN Tekanan (P) : gaya (F) per satuan luas (A). Satuan tekanan adalah pascal (Pa) = N/m2. Untuk benda padat gaya per luas satuan tidak disebut tekanan, tetapi tegangan (stress). Untuk fluida diam, tekanan adalah sama ke segala arah. Tekanan di dalam fluida meningkat sesuai dengan kedalamannya akibat berat fluida (pengaruh gravitasi) sehingga fluida pada bagian bawah menanggung beban yang lebih besar daripada fluida di bagian atas. Tetapi tekanan tidak bervariasi pada arah horisontal. Tekanan gas di dalam tangki dapat dianggap seragam karena berat gas terlalu kecil dan tidak mengakibatkan pengaruh yang berarti.

TEKANAN: UKUR, ATM, VAKUM Tekanan aktual pada posisi tertentu disebut tekanan absolut dan diukur secara relatif terhadap tekanan vakum, yaitu tekanan nol mutlak. Kebanyakan pengukur tekanan dikalibrasi untuk membaca nol di atmosfer (tekanan atmosfer lokal). Perbedaan tekanan absolut dan tekanan atmosfer disebut tekanan ukur (pressure gage). Tekanan di bawah tekanan atmosfer disebut tekanan vakum (vacuum pressure) dan diukur dengan pengukur vakum yang menunjukkan perbedaan antara tekanan atmosfer dan tekanan absolut. Pgage = Pabs – Patm (untuk P > Patm) Pvac = Patm – Pabs (untuk P < Patm)

TEKANAN UKUR, TEKANAN ATMOSFER, TEKANAN VAKUM

PENGUKUR TEKANAN MANOMETER PRESSURE GAGE BAROMETER

PRINSIP MANOMETER Perhatikan gambar: Seimbang F = 0 P1 = P2 A P1 = A Patm + W di mana W = m g =  V g =  A h g P1 = Patm +  h g P = P1 - Patm =  h g = Tekanan ukur di dalam tangki

EXAMPLE : Manometer A manometer is used to measure the pressure in a tank. The fluid used has a specific gravity of 0.85, and the manometer column height is 55 cm, as shown in Figure. If the local atmospheric pressure is 96 kPa, determine the absolute pressure within the tank.

EXAMPLE: SOLUTION

EXAMPLE: MULTIFLUID MANOMETER Water in a tank is pressurized by air, and the pressure is measured by a multifluid manometer (see Figure). The tank is located on a mountain at an altitude of 1400 m where the atmospheric pressure is 85.6 kPa. Determine the air pressure in the tank if h1 = 0.1 m, h2 = 0.2 m, and h3 = 0.35 m. Take the densities of water, oil, and mercury to be 1000 kg/m3, 850 kg/m3, and 13,600 kg/m3, respectively.

SOLUTION

APLIKASI MANOMETER Measuring the pressure drop across a flow section or a flow device by a differential manometer: P1 + 1g(a + h) - 2gh - 1ga = P2 P1 - P2 = (2 - 1)gh Untuk 2 >> 1 : P1 - P2 ≈ 2 g h

BAROMETER Torricelli Patm =  g h

EXAMPLE3: BAROMETER Determine the atmospheric pressure at a location where the barometric reading is 740 mm Hg and the gravitational acceleration is g 9.81 m/s2. Assume the temperature of mercury to be 10oC, at which its density is 13,570 kg/m3.

EXAMPLE3: SOLUTION

TEKANAN ATMOSFER ELEVASI (m) TEKANAN (kPa) (mmHg) 0 (sea level) 101.325 760.00 1000 89.88 674.15 2000 79.50 596.30 5000 54.05 405.41 10,000 26.5 198.77 20,000 5.53 41.48 Rule of thumb: naik 10 m, tekanan atmosfer turun 1 mmHg

EFEK KETINGGIAN “….and whomsoever He wills to send astray, He makes his breast closed and constricted, as if he is climbing up to the sky. Thus Allah puts the wrath on those who believe not.” (QS, 6:125)

TEMPERATURE Thermodinamika  SUHU MUTLAK Satuan kelvin (K) untuk SI Satuan renkine (R) untuk USCS Konversi: T(K) = T(oC) + 273.15 T(R) = T(oF) + 456.67 T(oC) = 1.8T(oC) + 32 T(R) = 1.8 T(K) CAUTION: T(K) = T(oC) T(R) = T(oF)

EXAMPLE4: TEMPERATURE During a heating process, the temperature of a system rises by 10°C. Express this rise in temperature in K, °F, and R.

PR: Soal No: 1-6C, 1-7C, 1-15C, 1-16C, 1-17C, 1-20C, 1-21C, 1-22C, 1-23C, 1-24C, 1-29, 1-31, 1-34C, 1-35C, 1-36C, 1-39C, 1-40, 1-42, 1-43, 1-44, 1-45, 1-48, 1-51, 1-53, 1-55, 1-57, 1-59, 1-61, 1-62, 1-63, 1-65, 1-66, 1-73, 1-85, 1-88, 1-101, 1-103, 1-105, 1-106, 1-108, 1-120, 1-121, 1-122, 1-123, 1-125. 1 Mhs : 1 Concepts + 1 soal