28 September 2005Data Mining: Aplikasi dan Trend1 Aplikasi dan Trend dalam Data Mining Aplikasi Data mining Produk Sistem dan Penelitian Data mining Tema.

Slides:



Advertisements
Presentasi serupa
Developing Knowledge Management dalam perusahaan Week 10 – Pert 19 & 20 (Off Class Session)
Advertisements

Data Mining dan Aplikasi untuk Knowledge Management
Aplikasi Komputer dalam MRK batagem.com. Aplikasi Komputer dalam MK2 Komputer dan Konstruksi? Normative cost per unit value Construction Automobiles.
PEMOGRAMAN BERBASIS JARINGAN
Hypertext & Hypermedia
SOCIAL MEDIA Widianto Nugroho, S.Sn. |
Aspek Sosial & Organisasi Restyandito, S.Kom, MSIS.
Perancangan Web dan Internet. Introduction ? •What is a web site ? •What Is Internet ?
INTERNET & E-COMMERCE Internet Marketing & eMarketing
Hadi Syahrial (Health IT Security Forum)
TRIP GENERATION.
Materi Analisa Perancangan System.
THE FINDING A PATTERN STRATEGY STRATEGI MENEMUKAN POLA Oleh Kelompok 3.
1 Pertemuan > Desain fisik basis data Matakuliah: >/ > Tahun: > Versi: >
Administrasi Basis Data
IT SEBAGAI ALAT UNTUK MENCIPTAKAN KEUNGGULAN KOMPETISI
Arsitektur Teknologi Informasi
IT Project Management Based on PMBOK
Siklus Manajemen Pengetahuan
1.1 VISUAL STUDIO 2008 / VISUAL BASIC.NET By Wan hendra M
Slide 3-1 Elmasri and Navathe, Fundamentals of Database Systems, Fourth Edition Revised by IB & SAM, Fasilkom UI, 2005 Exercises Apa saja komponen utama.
PENGANTAR URBAN DESAIN
Teknologi Open Source (pertemuan 3) Open Source vs Free Software oleh Razief Perucha F.A D3-Manajemen Informatika Jurusan Matematika – FMIPA Universitas.
Taken From William Stallings Chapter 2 TCP/IP Models.
Introduction to The Design & Analysis of Algorithms
1 KOMPONEN PERUMUSAN PROGRAM KOMUNIKASI 1.Assesment - Focus the target audience 2.Planning - Target audience - Key of consumer benefit - Believe of the.
Artificial Intelligence
IT , Jaringan,Internet,E-commerce
PROSES PADA WINDOWS Pratikum SO. Introduksi Proses 1.Program yang sedang dalam keadaan dieksekusi. 2.Unit kerja terkecil yang secara individu memiliki.
M. Suwarso Kegiatan Lembaga Standarisasi Internasional Dalam Hal Telepon Internet Telepon Internet.
Ch. 7 TECHLOGY INTELLIGENCE. (T) Technical Intelligence Market Intelligence (M)
Pengantar/pengenalan (Introduction)
What are the elements of a web page?. DfM DfM
Green Productivity Prof. Ir. Moses L. Singgih, MSc, PhD
How human charactersitics, practitioners’ habits and health care system regulations affet the research and development of medical devices.
Risk Management.
Ruang Lingkup Bisnis Dr. Mohammad Abdul Mukhyi. SE., MM
2-Metode Penelitian Dalam Psikologi Klinis
Implementing an REA Model in a Relational Database
Manajemen Sistem Informasi
Basisdata Pertanian. After completing this lesson, you should be able to do the following Identify the available group functions Describe the use of group.
BAB 05 KINERJA PEMASARAN.
Chapter 5 Network Layer Part 1
1 Magister Teknik Perencanaan Universitas Tarumanagara General View On Graduate Program Urban & Real Estate Development (February 2009) Dr.-Ing. Jo Santoso.
2nd MEETING Assignment 4A “Exploring Grids” Assignment 4 B “Redesign Grids” Create several alternatives grid sysytem using the provided elements: (min.
BENTUK ING VERB + ING. Bentuk ING juga biasa disebut dengan ING form Meskipun pembentukannya sangat se- derhana tetapi penggunaannya mem- punyai aturan.
Thinking in terms of “Systems” What is a system? A system is a collection of interrelated components (subsystems) that function together to achieve some.
Roundtable discussion on citizen engagement for good governance in East Indonesia diskusi keterlibatan penduduk untuk tata pemerintahan yang baik di Indonesia.
LOGO Manajemen Data Berdasarkan Komputer dengan Sistem Database.
We are in search of passionate and driven individual to become one of the few Management Associates who will be developed to become bright leaders in the.
MODELS OF PR SYIFA SA. Grunig's Four models of Public Relations Model Name Type of Communica tion Model Characteristics Press agentry/ publicity model.
Metodologi Penelitian dalam Bidang Informatika
Prof. Drs. Sutarno, MSc., PhD.
Pemrograman Sistem Basis Data Chapter II Database Sistem (Lanjutan)
3.1 © 2007 by Prentice Hall OVERVIEW Information Systems, Organizations, and Strategy.
THE IMMERSED TUNNELS MAIN BENEFITS AND INNOVATION BY. WAWAN SETIAWAN.
© 2007 Cisco Systems, Inc. All rights reserved.Cisco Public 1 Fungsi dan Protokol Layer Aplikasi Network Fundamentals – Chapter 3.
THE EFFICIENT MARKETS HYPOTHESIS AND CAPITAL ASSET PRICING MODEL
© 2009 Fakultas Teknologi Informasi Universitas Budi Luhur Jl. Ciledug Raya Petukangan Utara Jakarta Selatan Website:
MARKETING MIX (BAURAN PEMASARAN).
Mengapa Strategi Gagal Diterapkan?
Product & Brand. Definitions Product –Anything offered to a market for attention, acquisition, use, or consumption that might satisfy a need or want.
Dasar-Dasar Periklanan
Slide 1 Chapter 1: Introduction to Systems Analysis and Design Alan Dennis, Barbara Wixom, and David Tegarden John Wiley & Sons, Inc.
12 Oktober 2006Data Mining : Konsep dan Teknologi1 Aplikasi dan Kecenderungan dalam Data Mining ■Aplikasi data mining ■Sistem produk dan protetipe riset.
Aplikasi dan Trend dalam Data Mining
ENTREPRENEURSHIP Lecture No: 44 BY CH. SHAHZAD ANSAR
Xiong, et al. A survey of core and support activities of communicable disease surveillance systems at operating-level CDCs in China. BMC Public Health.
What is Kerberos? Network Security.
NURS 737: Nursing Informatics Concepts and Practice in System Adoption
Transcript presentasi:

28 September 2005Data Mining: Aplikasi dan Trend1 Aplikasi dan Trend dalam Data Mining Aplikasi Data mining Produk Sistem dan Penelitian Data mining Tema Tambahan pada Data Mining Pengaruh Sosial dari Data Mining Trend dalam Data Mining Pertemuan ke 11

28 September 2005Data Mining: Aplikasi dan Trend2 Aplikasi Data Mining Data mining adalah disiplin ilmu yang masih baru dengan aplikasi yang luas dan beragam Masih ada satu nontrivial gap antara prinsip umum dari data mining dan domain-specific, effective data mining tools untuk aplikasi tertentu. Beberarap domain aplikasi, antara lain: Biomedical and DNA data analysis Financial data analysis Retail industry Telecommunication industry

28 September 2005Data Mining: Aplikasi dan Trend3 Biomedical and DNA Data Analysis Urutan DNA: 4 blok dasar yang membangun DNA: (nucleotides): adenine (A), cytosine (C), guanine (G), and thymine (T). Gene: satu urutan/barisan dari ratusan individual nucleotides tersusun dalam urutan tertentu. Manusia mempunyai sekitar 30,000 genes Sangat banyak cara sehingga nucleotides dapat diurutkan dan dibariskan untuk membentuk genes yang berbeda. Integrasi semantik dari keberagaman, database genome yang terdistribusi Current: highly distributed, uncontrolled generation dan menggunakan data DNA yang sangat luas kebergamannya Metode Data cleaning dan data integration dikembangkan dalam data mining akan membantu

28 September 2005Data Mining: Aplikasi dan Trend4 Analisis DNA : Contoh Pencarian keserupaan dan perbandingan diantara barisan DNA Bandingkan pola yang sering muncul dari setiap kelas (misal, penyakit dan kesehatan) Identifikasi pola barisan gene yang berpengaruh dalam berbagai penyakit. Analisis Association : Pengidentifikasian dari kemunculan barisan gen Sebagian penyakit tidak di triger melalui satu gen tunggal tetapi oleh kombinasi gen yang berlaku bersama. Analysis Association dapat membantu menentukan macam macam dari gen yang kelihatannya akan muncul secara bersamaan dalam contoh target. Analisis Path : menghubungkan gen ke tingkatan pengembangan penyakit yang berbeda. Gen yang berbeda dapat menjadi aktif pada tingkatan berbeda dari penyakit Mengembangkan intervensi pharmaceutical yang mentargetkan tingkatan yang berbeda secara terpisah. Tool Visualisasi dan analisis data genetika

28 September 2005Data Mining: Aplikasi dan Trend5 Data Mining untuk Analisis Data Keuangan Data keuangan terkumpul di bank dan intstitusi keuangan yang pada umumnya adalah lengkap, handal dan tinggi kualitasnya. Desain dan konstruksi dari data warehouse untuk analisis data multidimensi dan data mining. View perubahan debet dan pendapatan/keuntungan berdasarkan bulan, daerah, sektor dan faktor. Akses informasi statistik seperti max, min, total, average, trend, dll. Peramalan/prediksi pembayaran pinjaman / analisis kebijaksanaan kredit konsumen. Pemeringkatan pemilihan fitur dan keterhubungan atribut Kinerja pembayaran pinjaman Rating kredit konsumen

28 September 2005Data Mining: Aplikasi dan Trend6 Data Mining Keuangan Classification dan clustering dari konsumen untuk sasaran pemasaran. multidimensional segmentation melalui nearest- neighbor, classification, decision trees, dll. untuk mengidentifikasi kelompok konsumen atau mengasosiasi satu konsumen baru ke satu kelompok konsumen yang tepat/sesuai. Detection of money laundering dan kejahatan keuangan lainnya integration of from multiple DBs (e.g., bank transactions, federal/state crime history DBs) Tools: data visualization, linkage analysis, classification, clustering tools, outlier analysis, and sequential pattern analysis tools (find unusual access sequences)

28 September 2005Data Mining: Aplikasi dan Trend7 Data Mining untuk Retail Industry Retail industry: jumlah data yang sangat besar pada sales, customer shopping history, dll. Aplikasi dari retail data mining Identify customer buying behaviors Discover customer shopping patterns and trends Improve the quality of customer service Achieve better customer retention and satisfaction Enhance goods consumption ratios Design more effective goods transportation and distribution policies

28 September 2005Data Mining: Aplikasi dan Trend8 Data Mining dalam Retail Industry: Contoh Design and construction of data warehouses based on the benefits of data mining Multidimensional analysis of sales, customers, products, time, and region Analysis of the effectiveness of sales campaigns Customer retention: Analysis of customer loyalty Use customer loyalty card information to register sequences of purchases of particular customers Use sequential pattern mining to investigate changes in customer consumption or loyalty Suggest adjustments on the pricing and variety of goods Purchase recommendation and cross-reference of items

28 September 2005Data Mining: Aplikasi dan Trend9 Data Mining untuk Industri Telekomunikasi (1) A rapidly expanding and highly competitive industry and a great demand for data mining Understand the business involved Identify telecommunication patterns Catch fraudulent activities Make better use of resources Improve the quality of service Multidimensional analysis of telecommunication data Intrinsically multidimensional: calling-time, duration, location of caller, location of callee, type of call, etc.

28 September 2005Data Mining: Aplikasi dan Trend10 Fraudulent pattern analysis and the identification of unusual patterns Identify potentially fraudulent users and their atypical usage patterns Detect attempts to gain fraudulent entry to customer accounts Discover unusual patterns which may need special attention Multidimensional association and sequential pattern analysis Find usage patterns for a set of communication services by customer group, by month, etc. Promote the sales of specific services Improve the availability of particular services in a region Use of visualization tools in telecommunication data analysis Data Mining untuk Industri Telekomunikasi (1)

28 September 2005Data Mining: Aplikasi dan Trend11 Bagaimana memilih satu Sistem Data Mining? Commercial data mining systems have little in common Different data mining functionality or methodology May even work with completely different kinds of data sets Need multiple dimensional view in selection Data types: relational, transactional, text, time sequence, spatial? System issues running on only one or on several operating systems? a client/server architecture? Provide Web-based interfaces and allow XML data as input and/or output?

28 September 2005Data Mining: Aplikasi dan Trend12 Bagaimana memilih satu Sistem Data Mining? (2) Data sources ASCII text files, multiple relational data sources support ODBC connections (OLE DB, JDBC)? Data mining functions and methodologies One vs. multiple data mining functions One vs. variety of methods per function More data mining functions and methods per function provide the user with greater flexibility and analysis power Coupling with DB and/or data warehouse systems Four forms of coupling: no coupling, loose coupling, semitight coupling, and tight coupling Ideally, a data mining system should be tightly coupled with a database system

28 September 2005Data Mining: Aplikasi dan Trend13 Bagaimana memilih satu Sistem Data Mining? (3) Scalability Row (or database size) scalability Column (or dimension) scalability Curse of dimensionality: it is much more challenging to make a system column scalable that row scalable Visualization tools “A picture is worth a thousand words” Visualization categories: data visualization, mining result visualization, mining process visualization, and visual data mining Data mining query language and graphical user interface Easy-to-use and high-quality graphical user interface Essential for user-guided, highly interactive data mining

28 September 2005Data Mining: Aplikasi dan Trend14 Contoh Sistem Data Mining (1) IBM Intelligent Miner A wide range of data mining algorithms Scalable mining algorithms Toolkits: neural network algorithms, statistical methods, data preparation, and data visualization tools Tight integration with IBM's DB2 relational database system SAS Enterprise Miner A variety of statistical analysis tools Data warehouse tools and multiple data mining algorithms Mirosoft SQLServer 2000 Integrate DB and OLAP with mining Support OLEDB for DM standard

28 September 2005Data Mining: Aplikasi dan Trend15 Contoh Sistem Data Mining (2) SGI MineSet Multiple data mining algorithms and advanced statistics Advanced visualization tools Clementine (SPSS) An integrated data mining development environment for end-users and developers Multiple data mining algorithms and visualization tools DBMiner (DBMiner Technology Inc.) Multiple data mining modules: discovery-driven OLAP analysis, association, classification, and clustering Efficient, association and sequential-pattern mining functions, and visual classification tool Mining both relational databases and data warehouses

28 September 2005Data Mining: Aplikasi dan Trend16 Data Mining dan Intelligent Query Answering A general framework for the integration of data mining and intelligent query answering Data query: finds concrete data stored in a database; returns exactly what is being asked Knowledge query: finds rules, patterns, and other kinds of knowledge in a database Intelligent (or cooperative) query answering: analyzes the intent of the query and provides generalized, neighborhood or associated information relevant to the query

28 September 2005Data Mining: Aplikasi dan Trend17 Trends dalam Data Mining (1) Application exploration development of application-specific data mining system Invisible data mining (mining as built-in function) Scalable data mining methods Constraint-based mining: use of constraints to guide data mining systems in their search for interesting patterns Integration of data mining with database systems, data warehouse systems, and Web database systems Invisible data mining

28 September 2005Data Mining: Aplikasi dan Trend18 Trends dalam Data Mining (2) Standardization of data mining language A standard will facilitate systematic development, improve interoperability, and promote the education and use of data mining systems in industry and society Visual data mining New methods for mining complex types of data More research is required towards the integration of data mining methods with existing data analysis techniques for the complex types of data Web mining Privacy protection and information security in data mining