7. APLIKASI INTEGRAL MA1114 KALKULUS I.

Slides:



Advertisements
Presentasi serupa
Matematika SMK INTEGRAL Kelas/Semester: III/5 Persiapan Ujian Nasional.
Advertisements

KINEMATIKA Kinematika adalah cabang ilmu Fisika yang membahas gerak benda tanpa memperhatikan penyebab gerak benda tersebut. Penyebab gerak yang sering.
Selamat Datang Dalam Kuliah Terbuka Ini
Vektor dalam R3 Pertemuan
Dimensi Tiga (Proyeksi & Sudut).
Translasi Rotasi Refleksi Dilatasi
SISTEM KOORDINAT.
1 ANALISA VARIABEL KOMPLEKS Oleh: Drs. Toto’ Bara Setiawan, M.Si. (
Menempatkan Pointer Q 6.3 & 7.3 NESTED LOOP.
PENGGUNAAN INTEGRAL Menghitung luas suatu daerah yang dibatasi oleh kurva dan sumbu-sumbu koordinat. Menghitung volume benda putar. 9 Luas daerah di bawah.
GELOMBANG MEKANIK Transversal Longitudinal.
Menentukan komposisi dua fungsi dan invers suatu fungsi
Selamat Datang Dalam Kuliah Terbuka Ini 1. Kuliah terbuka kali ini berjudul “Pilihan Topik Matematika -II” 2.
KALKULUS 1.
Materi Kuliah Kalkulus II
SMA Pahoa, April 2011 KD 6.3. Garis singgung, Fungsi naik-turun, Nilai maks-min, dan Titik stasioner Menggunakan turunan untuk menentukan karakteristik.
RELASI & FUNGSI Widita Kurniasari.
2. FUNGSI MA1114 Kalkulus I.
MODUL KULIAH MATEMATIKA TERAPAN
Bab 8 Turunan 7 April 2017.
Bab 1 INTEGRAL.
Aplikasi integral tentu
HITUNG INTEGRAL INTEGRAL TAK TENTU.
MODUL VI : PENERAPAN INTEGRAL
PENGGUNAAN INTEGRAL TERTENTU
Tugas: Power Point Nama : cici indah sari NIM : DOSEN : suartin marzuki.
Integral Lipat-Tiga.
Integrasi Numerik (Bag. 2)
BENDA TEGAR PHYSICS.
Persamaan Linier dua Variabel.
Selamat Datang Dalam Kuliah Terbuka Ini
Integral KD 1.3 Luas Daerah dan Volume Benda Putar
Luas Daerah ( Integral ).
SEGI EMPAT 4/8/2017.
ITK-121 KALKULUS I 3 SKS Dicky Dermawan
Bab V INTEGRAL TERTENTU
Prof.Dr.Ir.SRI REDJEKI MT
MEDAN LISTRIK.
Fungsi Invers, Eksponensial, Logaritma, dan Trigonometri
BENDA TEGAR FI-1101© 2004 Dr. Linus Pasasa MS.
4. TURUNAN MA1114 Kalkulus I.
Waniwatining II. HIMPUNAN 1. Definisi
5. Aplikasi Turunan MA1114 KALKULUS I.
SEGI EMPAT Oleh : ROHMAD F.F., S.Pd..
Umi Sa’adah Politeknik Elektronika Negeri Surabaya 2012
6. INTEGRAL.
SISTEM PERSAMAAN LINIER
IRISAN KERUCUT PERSAMAAN LINGKARAN.
6. INTEGRAL.
Persamaan Garis Lurus Latihan Soal-soal.
MATERI PEMBELAJARAN KELAS 4 SEKOLAH DASAR.
MAT 420 Geometri Analitik LINGKARAN
Pohon (bagian ke 6) Matematika Diskrit.
P OHON 1. D EFINISI Pohon adalah graf tak-berarah terhubung yang tidak mengandung sirkuit 2.
Koordinat Kartesius, Koordinat Tabung & Koordinat Bola
Dimensi Tiga (Jarak) SMA 5 Mtr.
INTEGRAL TENTU DAN PENERAPANNYA
Integral Lipat Dua.
Macam-Macam Bangun Ruang
KALKULUS 2 JURUSAN TEKNOLOGI INFORMASI FAKULTAS TEKNIK UNIVERSITAS TADULAKO PROGRAM STUDI S1 TEKNIK INFORMATIKA.
PENERAPAN INTEGRAL Menghitung luas suatu daerah yang dibatasi oleh kurva dan sumbu-sumbu koordinat.
7.2.2 Metoda Cincin a. Daerah diputar terhadap sumbu x Daerah D
APLIKASI INTEGRAL TENTU.
Matakuliah : R0262/Matematika Tahun : September 2005 Versi : 1/1
BAB 2 INTEGRAL LIPAT.
M-03 SISTEM KOORDINAT kartesius dan kutub
Integral.
15 Kalkulus Yulius Eka Agung Seputra,ST,MSi. FASILKOM
7. APLIKASI INTEGRAL.
Luas daerah yang dibatasi oleh kurva y = f(x)  0, sumbu x, garis x = a dan garis x = b dirumuskan: Diatas Sumbu X (+)
Transcript presentasi:

7. APLIKASI INTEGRAL MA1114 KALKULUS I

7.1 Menghitung Luas Daerah a.Misalkan daerah Luas D = ? f(x) Langkah : Iris D menjadi n bagian dan luas satu buah irisan dihampiri oleh luas persegi panjang dengan tinggi f(x) alas(lebar) D a b 2. Luas D dihampiri oleh jumlah luas persegi panjang. Dengan mengambil limitnya diperoleh: Luas D = A = MA1114 KALKULUS I

Contoh : Hitung luas daerah yang dibatasi oleh kurva sumbu x, dan x = 2. Luas irisan Luas daerah 2 MA1114 KALKULUS I

b) Misalkan daerah Luas D = ? Langkah : h(x) Luas D = ? D h(x)-g(x) Langkah : Iris D menjadi n bagian dan luas satu buah irisan dihampiri oleh luas persegi panjang dengan tinggi h(x)-g(x) alas(lebar) g(x) a b 2. Luas D dihampiri oleh jumlah luas persegi panjang. Dengan mengambil limitnya diperoleh: Luas D = A = MA1114 KALKULUS I

Contoh : Hitung luas daerah yang dibatasi oleh garis y = x+4 dan parabola Titik potong antara garis dan parabola y=x+4 -2 3 x = -2, x = 3 Luas irisan MA1114 KALKULUS I

Sehingga luas daerah : Ctt : Jika irisan dibuat tegak lurus terhadap sumbu x maka tinggi irisan adalah kurva yang terletak disebelah atas dikurangi kurva yang berada disebelah bawah. Jika batas atas dan bawah irisan berubah untuk sembarang irisan di D maka daerah D harus dibagi dua atau lebih MA1114 KALKULUS I

Contoh : Hitung luas daerah yang dibatasi oleh sumbu x, dan y = -x + 2 Jawab Titik potong x = -2, x = 1 Jika dibuat irisan tegak, maka daerah harus dibagi menjadi dua bagian y=-x+2 Luas irisan I 1 2 Luas irisan II MA1114 KALKULUS I

Luas daerah I Luas daerah II Sehingga luas daerah MA1114 KALKULUS I

c). Misalkan daerah Luas D = ? Langkah : g(y) D h(y) Langkah : h(y)-g(y) Iris D menjadi n bagian dan luas satu buah irisan dihampiri oleh luas persegi panjang dengan tinggi h(y)-g(y) alas(lebar) c 2. Luas D dihampiri oleh jumlah luas persegi panjang. Dengan mengambil limitnya diperoleh: Luas D = A = MA1114 KALKULUS I

Contoh: Hitung luas daerah yang dibatasi oleh dan Jawab : Titik potong antara garis dan parabola 1 y = -2 dan y = 1 Luas irisan -2 MA1114 KALKULUS I

Sehingga luas daerah : Ctt : Jika irisan sejajar dengan sumbu x maka tinggi irisan adalah kurva yang terletak disebelah kanan dikurangi kurva yang berada disebelah kiri. Jika batas kanan dan kiri irisan berubah untuk sembarang irisan di D maka daerah D harus dibagi dua atau lebih MA1114 KALKULUS I

7.2 Menghitung volume benda putar 7.2.1 Metoda Cakram a. Daerah diputar terhadap sumbu x f(x) D a b Daerah D Benda putar ? Volume benda putar MA1114 KALKULUS I

Untuk menghitung volume benda putar gunakan pendekatan Iris , hampiri, jumlahkan dan ambil limitnya. Jika irisan berbentuk persegi panjang dengan tinggi f(x) dan alas diputar terhadap sumbu x akan diperoleh suatu cakram lingkaran dengan tebal dan jari-jari f(x). f(x) D sehingga a b f(x) Catatan: jari-jari=jarak dari sumbu putar ke batas daerah

Contoh: Tentukan volume benda putar yang terjadi jika daerah D yang dibatasi oleh , sumbu x, dan garis x=2 diputar terhadap sumbu x Jika irisan diputar terhadap sumbu x akan diperoleh cakram dengan jari-jari dan tebal Sehingga 2 Volume benda putar MA1114 KALKULUS I

diputar terhadap sumbu y b. Daerah diputar terhadap sumbu y d d x=g(y) D c c Benda putar Daerah D ? Volume benda putar MA1114 KALKULUS I

Untuk menghitung volume benda putar gunakan pendekatan Iris , hampiri, jumlahkan dan ambil limitnya. Jika irisan berbentuk persegi panjang dengan tinggi g(y) dan alas diputar terhadap sumbu y akan diperoleh suatu cakram lingkaran dengan tebal dan Jari-jari g(y). d x=g(y) D sehingga c MA1114 KALKULUS I

Contoh : Tentukan volume benda putar yang terjadi jika daerah yang dibatasi oleh garis y = 4, dan sumbu y diputar terhadap sumbu y Jika irisan dengan tinggi dan tebal diputar terhadap sumbu y akan diperoleh cakram dengan jari-jari dan tebal 4 Sehingga Volume benda putar MA1114 KALKULUS I

7.2.2 Metoda Cincin a. Daerah diputar terhadap sumbu x Daerah D h(x) D g(x) a b Daerah D Benda putar ? Volume benda putar MA1114 KALKULUS I

Untuk menghitung volume benda putar gunakan pendekatan Iris , hampiri, jumlahkan dan ambil limitnya. h(x) Jika irisan berbentuk persegi panjang dengan tinggi h(x)-g(x) dan alas diputar terhadap sumbu x akan diperoleh suatu cincin dengan tebal dan jari –jari luar h(x) dan jari-jari dalam g(x). D g(x) sehingga a b h(x) g(x) Catatan penting !: Jari-jari luar=jarak dari sb putar ke batas daerah paling luar Jari-jari dalam=jarak dari sb putar ke batas daerah paling dalam KALKULUS I

Contoh: Tentukan volume benda putar yang terjadi jika daerah D yang dibatasi oleh , sumbu x, dan garis x=2 diputar terhadap garis y=-1 Jika irisan diputar terhadap garis y=1 Akan diperoleh suatu cincin dengan Jari-jari dalam 1 dan jari-jari luar Sehingga D 2 1 y=-1 Volume benda putar : MA1114 KALKULUS I

7.2.3 Metoda Kulit Tabung Diketahui Jika D diputar terhadap sumbu y diperoleh benda putar f(x) D a b Daerah D Benda putar Volume benda putar ? MA1114 KALKULUS I

Untuk menghitung volume benda putar gunakan pendekatan Iris , hampiri, jumlahkan dan ambil limitnya. Jika irisan berbentuk persegi panjang dengan tinggi f(x) dan alas serta berjarak x dari sumbu y diputar terhadap sumbu y akan diperoleh suatu kulit tabung dengan tinggi f(x), jari-jari x, dan tebal f(x) D a b sehingga x f(x) x Catatan penting !: jari-jari=jarak dari partisi ke sumbu putar. KALKULUS I

Contoh: Tentukan volume benda putar yang terjadi jika daerah D yang dibatasi oleh , sumbu x, dan garis x=2 diputar terhadap sumbu y Jika irisan dengan tinggi ,tebal dan berjarak x dari sumbu y diputar terhadap sumbu y akan diperoleh kulit tabung dengan tinggi , tebal dan jari jari x D Sehingga 2 x Volume benda putar MA1114 KALKULUS I

Irisan dibuat tegak lurus terhadap sumbu putar Catatan : Metoda cakram/cincin Irisan dibuat tegak lurus terhadap sumbu putar - Metoda kulit tabung Irisan dibuat sejajar dengan sumbu putar Jika daerah dan sumbu putarnya sama maka perhitungan dengan menggunakan metoda cakram/cincin dan metoda kulit tabung akan menghasilkan hasil yang sama Contoh Tentukan benda putar yang terjadi jika daerah D yang dibatasi Oleh parabola ,garis x = 2, dan sumbu x diputar terhadap Garis y = 4 b. Garis x = 3 MA1114 KALKULUS I

Jika irisan diputar terhadap garis y=4 akan diperoleh cincin dengan a. Sumbu putar y = 4 (i) Metoda cincin Jika irisan diputar terhadap garis y=4 akan diperoleh cincin dengan y=4 Jari-jari dalam = 4 Jari-jari luar = Sehingga D 2 Volume benda putar MA1114 KALKULUS I

(ii) Metoda kulit tabung Jika irisan diputar terhadap garis y=4 akan diperoleh kulit tabung dengan y=4 Jari-jari = r = Tinggi = h = y Tebal = D Sehingga 2 Volume benda putar MA1114 KALKULUS I

Jika irisan diputar terhadap garis x=3 diperoleh cincin dengan b. Sumbu putar x=3 (i) Metoda cincin x=3 Jika irisan diputar terhadap garis x=3 diperoleh cincin dengan Jari-jari dalam = Jari-jari luar = Sehingga 1 D 2 3 Volume benda putar MA1114 KALKULUS I

(ii) Metoda kulit tabung x=3 Jika irisan diputar terhadap garis x=3 diperoleh kulit tabung dengan Tinggi = h = Jari-jari = r = 3-x Tebal = D Sehingga x 2 3-x 3 Volume benda putar MA1114 KALKULUS I

7.3 Panjang Kurva Persamaan parameter kurva dibidang x = f(t) y = g(t) (1) Titik A(f(a),g(a)) disebut titik pangkal kurva dan titik B(f(b),g(b)) disebut titik ujung dari kurva. Definisi : Suatu kurva dalam bentuk parameter seperti (1) disebut mulus jika (i) dan kontinu pada [a,b] Kurva tidak berubah sekonyong-konyong (ii) dan tidak secara bersamaan nol pada (a,b) MA1114 KALKULUS I

Misal diberikan kurva dalam bentuk parameter (1), akan dihitung panjang kurva Langkah 1. Partisi [a,b] menjadi n bagian, dengan titik-titik pembagian ● a b ● Partisi pada [a,b] Paritisi pada kurva MA1114 KALKULUS I

Panjang busur dihampiri dengan panjang tali busur 2. Hampiri panjang kurva panjang busur panjang tali busur Panjang busur dihampiri dengan panjang tali busur Dengan menggunakan teorema nilai rata-rata untuk turunan, terdapat sehingga MA1114 KALKULUS I

Panjang kurva dihampiri oleh jumlah panjang tali busur dengan sehingga Panjang kurva dihampiri oleh jumlah panjang tali busur Dengan mengambil panjang partisi(||P||) menuju nol diperoleh MA1114 KALKULUS I

Jika persamaan kurva y=f(x), Ctt: Jika persamaan kurva y=f(x), Jika persamaan kurva x=g(y), MA1114 KALKULUS I

Contoh : Hitung panjang kurva 1. Panjang kurva MA1114 KALKULUS I

2. antara x =1/3 dan x=7 Jawab : MA1114 KALKULUS I

A. Gambarkan dan hitung luas daerah yang dibatasi oleh Soal Latihan A. Gambarkan dan hitung luas daerah yang dibatasi oleh 1. 2. 3. y = x , y = 4x , y = -x +2 4. y = sin x, y = cos x, x = 0 , x = 2. 5. MA1114 KALKULUS I

B. Hitung volume benda putar yang terjadi jika daerah yang di batasi oleh grafik fungsi-fungsi berikut diputar terhadap sumbu x 1. 2. 3. y = sin x, y = cos x, x = 0 , x = /4 4. 5. MA1114 KALKULUS I

C. Daerah D dibatasi oleh kurva dan garis x = 2y. Hitung volume benda putar, jika D diputar terhadap : (1) sumbu x (4) sumbu y (2) garis x = -1 (5) garis y = -2 (3) garis y = 4 (6) garis x = 4 D. Daerah D dibatasi oleh parabol dan garis x+ y = 4. Hitung volume benda putar, jika D diputar terhadap : (1) sumbu x (3) sumbu y (2) garis x = 6 (4) garis y = -1 MA1114 KALKULUS I

E. Hitung panjang kurva berikut 1. 2. 3. 4. 5. 6. MA1114 KALKULUS I