Tracking Image dengan Metode feature Lucas-Kanade

Slides:



Advertisements
Presentasi serupa
Menggambarkan Data: Tabel Frekuensi, Distribusi Frekuensi, dan Presentasi Grafis Chapter 2.
Advertisements

WE-2010 Web Engineering Husni husni.trunojoyo.ac.id
MS. POWER POINT 2007 Kelas XII Semester 2
Array.
Pengujian Hipotesis untuk Satu dan Dua Varians Populasi
Wiratmoko Yuwono. Requirement  Apache Web Server  PHP  Library NUSoap.
This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT. © 2006 Microsoft Corporation. All.
Algoritma & Pemrograman #10
Oleh : Haris Munandar, ST., M.Ti PT. Solusi Sentra Mandiri.
Hypertext & Hypermedia
Apa yg terpenting dalam DM?Apa yg terpenting dalam DM?  Data 2.
Memulai Drive Test menggunakan TEMS Investigation 6.1.4
Image Processing Nana Ramadijanti Laboratorium Computer Vision
Kinematics in Two Dimension - Kinematika dalam Dua Dimensi -
1 Pertemuan 21 Pompa Matakuliah: S0634/Hidrologi dan Sumber Daya Air Tahun: 2006 Versi: >
Estimasi Prob. Density Function dengan EM Sumber: -Forsyth & Ponce Chap. 7 -Standford Vision & Modeling Sumber: -Forsyth & Ponce Chap. 7 -Standford Vision.
Ilmu Komputer Universitas Gadjah Mada Ilmu Komputer Universitas Gadjah Mada Multimedia on The Web Chapter 1 The Web Wizard’s Guide to MULTIMEDIA James.
Review Operasi Matriks
UPGRADING PENGEMBANGAN BAHAN BELAJAR MANDIRI BERBASIS MULTIMEDIA DAN WEB 2.0 E-Learning dalam Kajian Psikologi.
Internal dan Eksternal Sorting
Pengantar/pengenalan (Introduction)
Interface Nur Hayatin, S.ST Jurusan Teknik Informatika Universitas Muhammadiyah Malang Sem Genap 2010.
“Pemanfaatan Teknologi Komunikasi dan Satelit untuk Dunia Pendidikan”
Oracle Developer/2000. Developer/2000 Products FormsReportsGraphics.
Lily Puspa Dewi1 PPA Pertemuan ke – 2 Site Management Chapter 3 & 4.
1. P ENDUGAAN P ARAMATER DENGAN M ETODE M AXIMUM L IKELIHOOD 2.
JAVA CLASS Bahasa Pemrogramam BAHASA PEMROGRAMAN PERTEMUAN #9.
Menggunakan OLE Drag-Drop
Menggunakan Drag-Drop
Sesi 4 – Mengenal Tool Authoring Arief Bahtiar, ST.,MT. Kepala Comlabs USDI – ITB, Koordinator E-learning
PENGUKURAN TEGANGAN AC
METODE SAMPLING by Achmad Prasetyo, S.Si., M.M..
SBS (Sushi Bar System) _Andrian R.H _Dwi F _Naldo S.L.
SBS (Sushi Bar System) _Andrian R.H _Dwi F _Naldo S.L.
Information and Communication Technology: The Meaning of TECHNOLOGY presented by: Rhiza S. Sadjad
Foreign Currency Translation
1 Magister Teknik Perencanaan Universitas Tarumanagara General View On Graduate Program Urban & Real Estate Development (February 2009) Dr.-Ing. Jo Santoso.
2nd MEETING Assignment 4A “Exploring Grids” Assignment 4 B “Redesign Grids” Create several alternatives grid sysytem using the provided elements: (min.
Features Full Duplex Operation (Independent Serial Receive and Transmit Registers) Asynchronous or Synchronous Operation Master or Slave Clocked Synchronous.
TRAVERSING BINARY TREE
Aplikasi Manipulasi Data
METODE LOG-OPPONENT (IRgBy)
MACROMEDIA FLASH. PERTEMUAN II Lesson 04 : Layers Movie Properties (Ctrl + M) Stage : Interface ( View | Rulers dan Grid) Tweening : MOTION Tweening :
Macromedia Flash Pro 8.:: Fundamentals Workshop
© 2007 Cisco Systems, Inc. All rights reserved.Cisco Public 1 Fungsi dan Protokol Layer Aplikasi Network Fundamentals – Chapter 3.
1 Character Strings. 2 Topik String –Representation –Declaration –Functions –Kesalahan Umum –Index char dlm string.
Kelas Dasar HTML Dasar SMK Al-Muhajirin Sabtu, 29 November 2014.
ASSALAMU’ALAIKUM Wr.Wb I will be presenting on how to make ice cream (Assalamu'alaikum Wr.Wb Saya akan menyajikan tentang cara untuk membuat es krim) Name:M.
Retrosintetik dan Strategi Sintesis
Web Teknologi I (MKB511C) Minggu 12 Page 1 MINGGU 12 Web Teknologi I (MKB511C) Pokok Bahasan: – Text processing perl-compatible regular expression/PCRE.
Person 19 || Marty Rori 1. Apa yang Buruk Tentang Menggunakan? Vairables global? 2 tidak aman!  Jika dua atau lebih programmer bekerja sama dalam program,
DANDC wijanarto.
MICROSOFT EXCEL 2000 Bagian #4 GRAPHICS : OBJECT & CHART.
Aplikasi Model Jaringan Syaraf Tiruan dengan Radial Basis Function untuk Mendeteksi Kelainan Otak (Stroke Infark) Yohanes Tanjung S.
PROCESS DAN THREADS Pengertian : Program Proses MonoProgramming
Image Registration & Tracking dengan Metode Lucas & Kanade
Konvolusi Dan Transformasi Fourier
Membuat Asesori Web.
KONVOLUSI Oleh : Edy Mulyanto.
Materi 02(b) Pengolahan Citra Digital
Dasar Pengolahan Video Digital
Modul 1 PENGANTAR PENGOLAHAN CITRA
PEMODELAN dan SIMULASI
Node Editor Pada Blender
02 |Introduction to OpenGL
TUGAS ANDA HANYA MENYEBUTKAN WARNANYA SAJA.
Tri Rahajoeningroem, MT T Elektro UNIKOM
Re-annotation and summaries.
近十三年来的中国会计理论研究基本取向态势 ——基于2000~2012年间国家三大基金资助 会计类项目的统计分析与思考
Synaptic activity regulates eEF2 phosphorylation in dendrites.
Transcript presentasi:

Tracking Image dengan Metode feature Lucas-Kanade Sumber: Forsyth & Ponce Chap. 19 Tomashi, Lucas & Kanade: Good Feature to Track Standford Vision & Modeling

Agenda Ulasan metode Lucas-Kanade + Implementasi dengan Matlab Analisa metode Lucas-Kanade Support Maps / Layers: - Robust Norm - Layered Motion - Background Subtraction - Color Layers - title - report on work done together with JM at UCB and together with MC MS at Interval 2 2

Lucas-Kanade: Minimisasi fungsi: Image 1D Intensitas - x + lets first talk about the function itself that should be minimized + illustrate it only on a scanline (and generalize it later) + assume it moves by 2 pixel to the right… + we could search + but we need to deal with 6 DOF or higher DOF cases + linearize (old Horn + Schunk) + just matrix inversion Linierisasi: Spatial Gradient Temporal Gradient

Lucas-Kanade: Minimisasi fungsi: Image 2D ROI ROI (u,v) + lets first talk about the function itself that should be minimized + illustrate it only on a scanline (and generalize it later) + assume it moves by 2 pixel to the right… + we could search + but we need to deal with 6 DOF or higher DOF cases + linearize (old Horn + Schunk) + just matrix inversion Spatial Gradient Temporal Gradient

C D C D Lucas-Kanade: Minimisasi fungsi: Image 2D Minimisasi fungsi E(u,v): => C D + lets first talk about the function itself that should be minimized + illustrate it only on a scanline (and generalize it later) + assume it moves by 2 pixel to the right… + we could search + but we need to deal with 6 DOF or higher DOF cases + linearize (old Horn + Schunk) + just matrix inversion C -1 D

Impelementasi Lucas-Kanade Step 0: Inisialisasi (dengan manual) Step 1: hitung: C dan D dan cari penyelesaian (u,v): - Hitung image derivatives Fx,Fy,Ft Step 2: re-warp image G: - Sub-pixel image interpolation Step 3: Loop: - Ukur error / terminate + lets first talk about the function itself that should be minimized + illustrate it only on a scanline (and generalize it later) + assume it moves by 2 pixel to the right… + we could search + but we need to deal with 6 DOF or higher DOF cases + linearize (old Horn + Schunk) + just matrix inversion

Impelementasi Lucas-Kanade Step 1: hitung: C dan D dan cari penyelesaian (u,v): - Hitung image derivatives Fx,Fy,Ft Fx, Fy: Filter dengan Gaussian Derivative Kernel: + lets first talk about the function itself that should be minimized + illustrate it only on a scanline (and generalize it later) + assume it moves by 2 pixel to the right… + we could search + but we need to deal with 6 DOF or higher DOF cases + linearize (old Horn + Schunk) + just matrix inversion

Impelementasi Lucas-Kanade Step 1: hitung: C dan D dan cari penyelesaian (u,v): - Hitung image derivatives Fx,Fy,Ft B) Ft: Finite Difference of Blurred F and G: + lets first talk about the function itself that should be minimized + illustrate it only on a scanline (and generalize it later) + assume it moves by 2 pixel to the right… + we could search + but we need to deal with 6 DOF or higher DOF cases + linearize (old Horn + Schunk) + just matrix inversion

Impelementasi Lucas-Kanade Step 1: hitung: C dan D dan cari penyelesaian (u,v): - Hitung image derivatives Fx,Fy,Ft - Hitung dengan Gaussian kernel (menggunakan coarse-to-fine strategy dengan pengurangan sigma) + lets first talk about the function itself that should be minimized + illustrate it only on a scanline (and generalize it later) + assume it moves by 2 pixel to the right… + we could search + but we need to deal with 6 DOF or higher DOF cases + linearize (old Horn + Schunk) + just matrix inversion

Operasi Warping gunakan fungsi interp2 dari Matlab Impelementasi Lucas-Kanade Step 2: re-warp image G: - Sub-pixel image interpolation + lets first talk about the function itself that should be minimized + illustrate it only on a scanline (and generalize it later) + assume it moves by 2 pixel to the right… + we could search + but we need to deal with 6 DOF or higher DOF cases + linearize (old Horn + Schunk) + just matrix inversion Operasi Warping gunakan fungsi interp2 dari Matlab

Impelementasi Lucas-Kanade Step 3: Loop: - Ukur error / terminate perhatikan: + lets first talk about the function itself that should be minimized + illustrate it only on a scanline (and generalize it later) + assume it moves by 2 pixel to the right… + we could search + but we need to deal with 6 DOF or higher DOF cases + linearize (old Horn + Schunk) + just matrix inversion

Analisa Grafis metode Lucas-Kanade - title - report on work done together with JM at UCB and together with MC MS at Interval 2 2

C D C D Lucas-Kanade: problem singulariti Minimisasi fungsi E(u,v): => C D + lets first talk about the function itself that should be Minimisasi fungsid + illustrate it only on a scanline (and generalize it later) + assume it moves by 2 pixel to the right… + we could search + but we need to deal with 6 DOF or higher DOF cases + linearize (old Horn + Schunk) + just matrix inversion C -1 D

Lucas-Kanade: problem singulariti + lets first talk about the function itself that should be Minimisasi fungsid + illustrate it only on a scanline (and generalize it later) + assume it moves by 2 pixel to the right… + we could search + but we need to deal with 6 DOF or higher DOF cases + linearize (old Horn + Schunk) + just matrix inversion Fx=0, Fy=0

Lucas-Kanade: problem singulariti + lets first talk about the function itself that should be minimized + illustrate it only on a scanline (and generalize it later) + assume it moves by 2 pixel to the right… + we could search + but we need to deal with 6 DOF or higher DOF cases + linearize (old Horn + Schunk) + just matrix inversion Fx=0, Fy=0 Fy=0

Lucas-Kanade: problem singulariti + lets first talk about the function itself that should be minimized + illustrate it only on a scanline (and generalize it later) + assume it moves by 2 pixel to the right… + we could search + but we need to deal with 6 DOF or higher DOF cases + linearize (old Horn + Schunk) + just matrix inversion Fx=0, Fy=0 Fy=0

Lucas-Kanade: Aperture Problem + lets first talk about the function itself that should be minimized + illustrate it only on a scanline (and generalize it later) + assume it moves by 2 pixel to the right… + we could search + but we need to deal with 6 DOF or higher DOF cases + linearize (old Horn + Schunk) + just matrix inversion Fx=0, Fy=0

Lucas-Kanade: Aperture Problem + lets first talk about the function itself that should be minimized + illustrate it only on a scanline (and generalize it later) + assume it moves by 2 pixel to the right… + we could search + but we need to deal with 6 DOF or higher DOF cases + linearize (old Horn + Schunk) + just matrix inversion Bergen et al.

Aperture Problem: Bisa diatasi ??? Hindari sebisa mungkin ! Gunakan nilai Eigenvalues untuk inisialisasi “Good Features” (lihat paper “Good Features to track” Shi-Tomasi) - Lokasi Good Feature berada pada: min(eig1,eig2) > a + lets first talk about the function itself that should be minimized + illustrate it only on a scanline (and generalize it later) + assume it moves by 2 pixel to the right… + we could search + but we need to deal with 6 DOF or higher DOF cases + linearize (old Horn + Schunk) + just matrix inversion

Aperture Problem: Bisa diatasi ??? “Good Features” (Shi-Tomasi) + lets first talk about the function itself that should be minimized + illustrate it only on a scanline (and generalize it later) + assume it moves by 2 pixel to the right… + we could search + but we need to deal with 6 DOF or higher DOF cases + linearize (old Horn + Schunk) + just matrix inversion

Aperture Problem: Bisa diatasi ??? coba di Hack ! regularisasi C: + lets first talk about the function itself that should be minimized + illustrate it only on a scanline (and generalize it later) + assume it moves by 2 pixel to the right… + we could search + but we need to deal with 6 DOF or higher DOF cases + linearize (old Horn + Schunk) + just matrix inversion

Aperture Problem: Bisa diatasi ??? Simoncelli et al 1991: + lets first talk about the function itself that should be minimized + illustrate it only on a scanline (and generalize it later) + assume it moves by 2 pixel to the right… + we could search + but we need to deal with 6 DOF or higher DOF cases + linearize (old Horn + Schunk) + just matrix inversion

Aperture Problem: Bisa diatasi ??? Tambah Aperture (window feature) ! Coarse-to-fine Pyramids (Bergen et al, Simoncelli) + lets first talk about the function itself that should be minimized + illustrate it only on a scanline (and generalize it later) + assume it moves by 2 pixel to the right… + we could search + but we need to deal with 6 DOF or higher DOF cases + linearize (old Horn + Schunk) + just matrix inversion

Aperture Problem: Bisa diatasi ??? Tambah Aperture (window feature) ! akibat: integrasi ROI lebih besar -> motion model jadi lebih komplex + lets first talk about the function itself that should be minimized + illustrate it only on a scanline (and generalize it later) + assume it moves by 2 pixel to the right… + we could search + but we need to deal with 6 DOF or higher DOF cases + linearize (old Horn + Schunk) + just matrix inversion

Pengembangan Lucas-Kanade secara Affine Affine Motion Model: 2D Translation 2D Rotation Scale in X / Y Shear + lets first talk about the function itself that should be minimized + illustrate it only on a scanline (and generalize it later) + assume it moves by 2 pixel to the right… + we could search + but we need to deal with 6 DOF or higher DOF cases + linearize (old Horn + Schunk) + just matrix inversion Matlab demo ->

Pengembangan Lucas-Kanade secara Affine Affine Motion Model -> digunakan pada Lucas-Kanade: + lets first talk about the function itself that should be minimized + illustrate it only on a scanline (and generalize it later) + assume it moves by 2 pixel to the right… + we could search + but we need to deal with 6 DOF or higher DOF cases + linearize (old Horn + Schunk) + just matrix inversion Matlab demo ->

Support Maps / Layers: - Robust Norm - Layered Motion - Background Subtraction - Color Based Tracking - title - report on work done together with JM at UCB and together with MC MS at Interval 2 2

Support Maps / Layers L2 Norm vs Robust Norm Bahaya dari fitting secara least square: Akibat adanya Outliers (gangguan pixel luar) menyebabkan square error menjadi sangat besar - title - report on work done together with JM at UCB and together with MC MS at Interval 2 2

Support Maps / Layers L2 Norm vs Robust Norm Bahaya dari fitting secara least square: L2 - title - report on work done together with JM at UCB and together with MC MS at Interval D 2 2

Support Maps / Layers L2 Norm vs Robust Norm Bahaya dari fitting secara least square: L2 robust - title - report on work done together with JM at UCB and together with MC MS at Interval D D 2 2

Support Maps / Layers Robust Norm -- baik untuk menangani outliers nonlinear optimization robust - title - report on work done together with JM at UCB and together with MC MS at Interval D 2 2

Support Maps / Layers Black-Jepson-95 - title - report on work done together with JM at UCB and together with MC MS at Interval 2 2

Support Maps / Layers Layered Motion (Jepson/Black, Weiss/Adelson, …) - title - report on work done together with JM at UCB and together with MC MS at Interval 2 2

Support Maps / Layers Kasus spesial dari Layered Motion: - Background substraction - Outlier rejection (== robust norm) - Kasus sederhana: Tiap Layer punya warna seragam - title - report on work done together with JM at UCB and together with MC MS at Interval 2 2

Support Maps / Layers Color Layers: P(skin | F(x,y)) - title - report on work done together with JM at UCB and together with MC MS at Interval 2 2