Introduction to Softcomputing Son Kuswadi Robotic and Automation Based on Biologically- inspired Technology (RABBIT) Electronic Engineering Polytechnic.

Slides:



Advertisements
Presentasi serupa
Developing Knowledge Management dalam perusahaan Week 10 – Pert 19 & 20 (Off Class Session)
Advertisements

3. Economic Returns to Land Resources: Theories of Land Rent
PEMOGRAMAN BERBASIS JARINGAN
Materi Analisa Perancangan System.
PENGUKURAN INTEGRITAS
IT SEBAGAI ALAT UNTUK MENCIPTAKAN KEUNGGULAN KOMPETISI
INTRODUCTION TO PSYCHOLOGY. Recommended Literature 1. Introduction to Psychology : Gateway to Mind and Behavior by Dennis Coon and John O. Mitterer 2.
PERULANGANPERULANGAN. 2 Flow of Control Flow of Control refers to the order that the computer processes the statements in a program. –Sequentially; baris.
Slide 3-1 Elmasri and Navathe, Fundamentals of Database Systems, Fourth Edition Revised by IB & SAM, Fasilkom UI, 2005 Exercises Apa saja komponen utama.
Review IS & Software System Concept Diah Priharsari PTIIK – Universitas Brawijaya Source: 1.Obrien & Marakas, Management Information.
Introduction to The Design & Analysis of Algorithms
IF-ITB/SAS/25Aug2003 IF7074 – Bagian Pertama Page 1 IF 7047 Kewirausahaan Teknologi Informasi Bagian Pertama: 1.1. Entrepreneurship, entrepreneur, dan.
KNOWLEDGE MANAGEMENT: philosophy, processes, and pitfalls EXTRACTED FROM Soo, Devinney, Midgley, Deering (2002) CALIFORNIA MANAGEMENT REVIEW, 44 (4) 1seri.
KIMIA ORGANIK II ELFI SUSANTI VH.
Denny Gunawan Introduction Background Goals Problems Scope and Limitation.
Jeff Howbert Introduction to Machine Learning Winter Classification Nearest Neighbor.
How to express certainty and uncertainty
Pengantar/pengenalan (Introduction)
Bilqis1 Pertemuan bilqis2 Sequences and Summations Deret (urutan) dan Penjumlahan.
Menjelaskan sifat – sifat komponen elektronika aktif dan pasif
Collabnet Overview v Informatika Introduction.
VALUING COMMON STOCKS Expected return : the percentage yield that an investor forecasts from a specific investment over a set period of time. Sometimes.
2-Metode Penelitian Dalam Psikologi Klinis
MEMORY Bhakti Yudho Suprapto,MT. berfungsi untuk memuat program dan juga sebagai tempat untuk menampung hasil proses bersifat volatile yang berarti bahwa.
3 nd Meeting Chemical Analysis Steps and issues STEPS IN CHEMICAL ANALYSIS 1. Sampling 2. Preparation 3. Testing/Measurement 4. Data analysis 2. Error.
Basisdata Pertanian. After completing this lesson, you should be able to do the following Identify the available group functions Describe the use of group.
2nd MEETING Assignment 4A “Exploring Grids” Assignment 4 B “Redesign Grids” Create several alternatives grid sysytem using the provided elements: (min.
BENTUK ING VERB + ING. Bentuk ING juga biasa disebut dengan ING form Meskipun pembentukannya sangat se- derhana tetapi penggunaannya mem- punyai aturan.
Roundtable discussion on citizen engagement for good governance in East Indonesia diskusi keterlibatan penduduk untuk tata pemerintahan yang baik di Indonesia.
LOGO Manajemen Data Berdasarkan Komputer dengan Sistem Database.
MODELS OF PR SYIFA SA. Grunig's Four models of Public Relations Model Name Type of Communica tion Model Characteristics Press agentry/ publicity model.
Metodologi Penelitian dalam Bidang Informatika
PEMERINTAH KOTA PONTIANAK DINAS PENDIDIKAN PEMERINTAH KOTA PONTIANAK DINAS PENDIDIKAN Jl. Letjen. Sutoyo Pontianak, Telp. (0561) , Website:
Diagnose device problems that connected to the Wide Area Network Identify problems Through the Symptoms that arise HOME.
SMPN 2 DEMAK GRADE 7 SEMESTER 2
THE EFFICIENT MARKETS HYPOTHESIS AND CAPITAL ASSET PRICING MODEL
MAINTENANCE AND REPAIR OF RADIO RECEIVER Competency : Repairing of Radio Receiver.
© 2009 Fakultas Teknologi Informasi Universitas Budi Luhur Jl. Ciledug Raya Petukangan Utara Jakarta Selatan Website:
PENJUMLAHAN GAYA TUJUAN PEMBELAJARAN:
PENGANTAR KAJIAN BUDAYA URBAN
Mengapa Strategi Gagal Diterapkan?
Web Teknologi I (MKB511C) Minggu 12 Page 1 MINGGU 12 Web Teknologi I (MKB511C) Pokok Bahasan: – Text processing perl-compatible regular expression/PCRE.
Made by: Febri, Andrew, Erina, Leon, Luvin, Jordy
FISIKA DASAR By: Mohammad Faizun, S.T., M.Eng. Head of Manufacture System Laboratory Mechanical Engineering Department Universitas Islam Indonesia.
Lecture 2 Introduction to C# - Object Oriented Sandy Ardianto & Erick Pranata © Sekolah Tinggi Teknik Surabaya 1.
PEMERINTAH KOTA PONTIANAK DINAS PENDIDIKAN PEMERINTAH KOTA PONTIANAK DINAS PENDIDIKAN Jl. Letjen. Sutoyo Pontianak, Telp. (0561) , Website:
Pendahuluan Algoritma Pengolahan Paralel S1-TI Prepared by: MT Wilson.
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
1 Pertemuan 15 Game Playing Matakuliah: T0264/Intelijensia Semu Tahun: Juli 2006 Versi: 2/1.
1 Pertemuan 11 Function dari System Matakuliah: M0446/Analisa dan Perancangan Sistem Informasi Tahun: 2005 Versi: 0/0.
VECTOR VECTOR IN PLANE.
Pemrograman Berorientasi Objek
A SMALL TRUTH TO MAKE LIFE 100%. Hard Work H+A+R+D+W+O+R+K = 98% Knowledge K+N+O+W+L+E+D+G+E = 96%
How Can I Be A Driver of The Month as I Am Working for Uber?
Suhandi Wiratama. Before I begin this presentation, I want to thank Mr. Abe first. He taught me many things about CorelDRAW. He also guided me when I.
Take a look at these photos.... Also, in case you're wondering where this hotel is, it isn't a hotel at all. It is a house! It's owned by the family of.
THE INFORMATION ABOUT HEALTH INSURANCE IN AUSTRALIA.
Artificial Intelligence Andrea Danyluk For FPS 2/2/04.
SIMILES. The comparison is carried out using the words ‘like’ as etc. Example : 1. as free as a bird. The word ‘free’ is compared with the word ‘bird’
User Interface Design and Development Shneiderman, Ch. 2 (loosely)
FIGURATIVE LANGUANGE By Mainike Silvi Rety B. S.Pd,M.Li.
Minimalist Motion Planning Using Global Topological Guarantees
Face Recognition based on Radial Basis Function and Clustering Algorithm Yuanfeng Gao 2008/12/12.
What is Kerberos? Network Security.
Xuan Huo and Ming Li and Zhi-Hua Zhou
Lecture 8 Normal model.
2. Discussion TASK 1. WORK IN PAIRS Ask your partner. Then, in turn your friend asks you A. what kinds of product are there? B. why do people want to.
Title of the Research Study
Mary, Our Mother Jesus Christ Course Document # TX
Wednesday/ September,  There are lots of problems with trade ◦ There may be some ways that some governments can make things better by intervening.
Transcript presentasi:

Introduction to Softcomputing Son Kuswadi Robotic and Automation Based on Biologically- inspired Technology (RABBIT) Electronic Engineering Polytechnic Institute of Surabaya Institut Teknologi Sepuluh Nopember

Agenda AI and Softcomputing From Conventional AI to Computational Intelligence Neural Networks Fuzzy Set Theory Evolutionary Computation

AI and Softcomputing AI: predicate logic and symbol manipulation techniques User Interface Inference Engine Explanation Facility Knowledge Acquisition KB: Fact rules Global Database Knowledge Engineer Human Expert Question Response Expert Systems User

AI and Softcomputing ANN Learning and adaptation Fuzzy Set Theory Knowledge representation Via Fuzzy if-then RULE Genetic Algorithms Systematic Random Search

AI and Softcomputing ANN Learning and adaptation Fuzzy Set Theory Knowledge representation Via Fuzzy if-then RULE Genetic Algorithms Systematic Random Search AI Symbolic Manipulation

AI and Softcomputing cat cut knowledge Animal? cat Neural character recognition

From Conventional AI to Computational Intelligence Conventional AI: Focuses on attempt to mimic human intelligent behavior by expressing it in language forms or symbolic rules Manipulates symbols on the assumption that such behavior can be stored in symbolically structured knowledge bases (physical symbol system hypothesis)

From Conventional AI to Computational Intelligence Intelligent Systems Sensing Devices (Vision) Natural Language Processor Mechanical Devices Perceptions Actions Task Generator Knowledge Handler Data Handler Knowledge Base Machine Learning Inferencing (Reasoning) Planning

Neural Networks

f   z -1 00 11  N   11 + - e(k+1) 00 ^ ^ y p (k+1) ^ u(k) Parameter Identification - Parallel

Neural Networks f f   z -1 00 11  N N   11 + - e(k+1) 00 ^ ^ y p (k+1) ^ u(k) Parameter Identification – Series Parallel

Neural Networks Control ANN Gp(s)Gp(s) Gc(s)Gc(s) R(s)R(s) C(s) Plant Feedforward controller Feedback controller ANN - + Learning Error

Neural Networks Control Ball-position sensor Controller Current-driven magnetic field Iron ball

Neural Networks

Experimental Results Feedback control only Feedback with fixed gain feedforward control Feedback with ANN Feedforward controller

Fuzzy Sets Theory What is fuzzy thinking Experts rely on common sense when they solve the problems How can we represent expert knowledge that uses vague and ambiguous terms in a computer Fuzzy logic is not logic that is fuzzy but logic that is used to describe the fuzziness. Fuzzy logic is the theory of fuzzy sets, set that calibrate the vagueness. Fuzzy logic is based on the idea that all things admit of degrees. Temperature, height, speed, distance, beauty – all come on a sliding scale. Jim is tall guy It is really very hot today

Fuzzy Set Theory Communication of “fuzzy “ idea This box is too heavy.. Therefore, we need a lighter one…

Fuzzy Sets Theory Boolean logic Uses sharp distinctions. It forces us to draw a line between a members of class and non members. Fuzzy logic Reflects how people think. It attempt to model our senses of words, our decision making and our common sense -> more human and intelligent systems

Fuzzy Sets Theory Prof. Lotfi Zadeh

Fuzzy Sets Theory Classical Set vs Fuzzy set NoName Height (cm) Degree of Membership of “tall men” CrispFuzzy 1Boy Martin Dewanto Joko Kom

Fuzzy Sets Theory Classical Set vs Fuzzy set Height(cm) Height(cm) Universe of discourse Membership value

Fuzzy Sets Theory Classical Set vs Fuzzy set Let X be the universe of discourse and its elements be denoted as x. In the classical set theory, crisp set A of X is defined as function f A (x) called the the characteristic function of A In the fuzzy theory, fuzzy set A of universe of discourse X is defined by function called the membership function of set A

Fuzzy Sets Theory Membership function

Fuzzy Sets Theory Fuzzy Expert Systems Kecepatan (KM) Jarak (JM) Posisi Pedal Rem (PPR)

Fuzzy Sets Theory Membership function Kecepatan (km/jam) Sangat Lambat Lambat Cukup Cepat Cepat Sekali Jarak (m) Sangat Dekat Agak Dekat Sedang Agak Jauh Jauh Sekali Posisi pedal rem ( 0 ) Injak Penuh Injak Agak Penuh Injak Sedang Injak Sedikit Injak Sedikit Sekali KM JM PPR

Fuzzy Sets Theory Fuzzy Rules Aturan 1: Bila kecepatan mobil cepat sekali dan jaraknya sangat dekat maka pedal rem diinjak penuh Aturan 2: Bila kecepatan mobil cukup dan jaraknya agak dekat maka pedal rem diinjak sedang Aturan 3: Bila kecepatan mobil cukup dan jaraknya sangat dekat maka pedal rem diinjak agak penuh

Fuzzy Sets Theory Fuzzy Expert Systems Aturan 1: Kecepatan (km/jam) Cepat Sekali Posisi pedal rem ( 0 ) Injak Penuh Jarak (m) Sangat Dekat

Fuzzy Sets Theory Fuzzy Expert Systems Jarak (m) Agak Dekat Posisi pedal rem ( 0 ) Injak Sedang Aturan 2: Kecepatan (km/jam) Cukup

Fuzzy Sets Theory Fuzzy Expert Systems Jarak (m) Sangat Dekat Posisi pedal rem ( 0 ) Injak Agak Penuh Kecepatan (km/jam) Cukup Aturan 3:

Fuzzy Sets Theory Fuzzy Expert Systems MOM : PPR = x0,2+20x0,4 COA : PPR = 0,2+0,4 = 16,67 0 Posisi pedal rem ( 0 ) MOM COA