KONSEP DASAR PROBABILITAS

Slides:



Advertisements
Presentasi serupa
Pengujian Hipotesis untuk Satu dan Dua Varians Populasi
Advertisements

Mata Kuliah : ALGORITMA dan STRUKTUR DATA 1.
QUESTION- RESPONSE QUESTION- RESPONSE. Adaptif Hal.: 2 Isi dengan Judul Halaman Terkait Judul Halaman Pada bagian question-response, pertanyaan-pertanyaan.
Survey on Prospect Theory Kusdhianto Setiawan Gadjah Mada University.
Modeling Data in the Organization
ESTIMASI PENJUALAN DATA TIME SERIES - DEKOMPOSISI 1. ADDITIVE MODEL 2. MULTIPLICATIVE MODEL.
PERUBAHAN VS PERBAIKAN Center for Continuous Improvement, Today is better than yesterday, tomorrow is better than today
Program Keahlian I – SI By Antonius Rachmat C, S.Kom
Peta Kontrol (Untuk Data Variabel)
EKO NURSULISTIYO.  Perhatikan gambar 11 a, perahu dikenai oleh ombak dari arah kanan misalkan setiap 4 sekon dalam keadaan perahu diam. Dalam keadaan.
Chapter Nine The Conditional.
ESTIMATION AND ROONDING OF NUMBERS
PERULANGANPERULANGAN. 2 Flow of Control Flow of Control refers to the order that the computer processes the statements in a program. –Sequentially; baris.
Ra Dewa Matahari.
Tugas-Tugas.
Slide 3-1 Elmasri and Navathe, Fundamentals of Database Systems, Fourth Edition Revised by IB & SAM, Fasilkom UI, 2005 Exercises Apa saja komponen utama.
Introduction to The Design & Analysis of Algorithms
IF-ITB/SAS/25Aug2003 IF7074 – Bagian Pertama Page 1 IF 7047 Kewirausahaan Teknologi Informasi Bagian Pertama: 1.1. Entrepreneurship, entrepreneur, dan.
PROSES PADA WINDOWS Pratikum SO. Introduksi Proses 1.Program yang sedang dalam keadaan dieksekusi. 2.Unit kerja terkecil yang secara individu memiliki.
1. Objek dalam kalimat aktif menjadi subjek dalam kalimat pasif
Review Operasi Matriks
Jeff Howbert Introduction to Machine Learning Winter Classification Nearest Neighbor.
TEKNOLOGI WIRELESS Modul 1 - Teknologi Wireless.
Mr. Ari Nurrohmat, S.Pd Present PROCEDURE for Grade IX.
Pengantar Metode Penarikan Contoh dan Sebaran Penarikan Contoh
Risk Management.
VALUING COMMON STOCKS Expected return : the percentage yield that an investor forecasts from a specific investment over a set period of time. Sometimes.
Text 1 By: Siwi Ratri K / Titik Rahayu /
2-Metode Penelitian Dalam Psikologi Klinis
Implementing an REA Model in a Relational Database
Pertemuan 3 Menghitung: Nilai rata-rata (mean) Modus Median
Analysis of Variance (ANOVA)
Pendugaan Parameter part 2
METODE SAMPLING by Achmad Prasetyo, S.Si., M.M..
MEMORY Bhakti Yudho Suprapto,MT. berfungsi untuk memuat program dan juga sebagai tempat untuk menampung hasil proses bersifat volatile yang berarti bahwa.
3 nd Meeting Chemical Analysis Steps and issues STEPS IN CHEMICAL ANALYSIS 1. Sampling 2. Preparation 3. Testing/Measurement 4. Data analysis 2. Error.
Basisdata Pertanian. After completing this lesson, you should be able to do the following Identify the available group functions Describe the use of group.
Slide 1 QUIS Langkah pertama caranya Buat di slide pertama judul Slide kedua soal Slide ketiga waktu habis Slide keempat jawaban yang benar Slide kelima.
LOGO Manajemen Data Berdasarkan Komputer dengan Sistem Database.
Amortization & Depresiasi
Metodologi Penelitian dalam Bidang Informatika
PEMERINTAH KOTA PONTIANAK DINAS PENDIDIKAN PEMERINTAH KOTA PONTIANAK DINAS PENDIDIKAN Jl. Letjen. Sutoyo Pontianak, Telp. (0561) , Website:
Diagnose device problems that connected to the Wide Area Network Identify problems Through the Symptoms that arise HOME.
Contentment Philippians 4: Contentment What does it mean to be content? What does it mean to be content? Are you a content person? Are you a content.
SMPN 2 DEMAK GRADE 7 SEMESTER 2
STRUCTURAL CONTROL continuation STATEMENT  SWITCH  WHILE  DO..WHILE.
THE EFFICIENT MARKETS HYPOTHESIS AND CAPITAL ASSET PRICING MODEL
1. 2 Work is defined to be the product of the magnitude of the displacement times the component of the force parallel to the displacement W = F ║ d F.
MAINTENANCE AND REPAIR OF RADIO RECEIVER Competency : Repairing of Radio Receiver.
PENJUMLAHAN GAYA TUJUAN PEMBELAJARAN:
Red -BlackTrees Evaliata Br Sembiring.
The intensive state of a PVT system containing N chemical species and  phases in equilibrium is characterized by the intensive variables, temperature.
TCP, THREE-WAY HANDSHAKE, WINDOW
Retrosintetik dan Strategi Sintesis
Web Teknologi I (MKB511C) Minggu 12 Page 1 MINGGU 12 Web Teknologi I (MKB511C) Pokok Bahasan: – Text processing perl-compatible regular expression/PCRE.
Made by: Febri, Andrew, Erina, Leon, Luvin, Jordy
K-Map Using different rules and properties in Boolean algebra can simplify Boolean equations May involve many of rules / properties during simplification.
Pertemuan 05 Sebaran Peubah Acak Diskrit
Ruang Contoh dan Peluang Pertemuan 05
Verb Tense Tense denotes the time of the action indicated by a verb. The time is not always the same as that indicated by the name of the tense.
Social Stratification
Master data Management
How Can I Be A Driver of The Month as I Am Working for Uber?
Things You Need to Know Before Running on the Beach.
THE INFORMATION ABOUT HEALTH INSURANCE IN AUSTRALIA.
HughesNet was founded in 1971 and it is headquartered in Germantown, Maryland. It is a provider of satellite-based communications services. Hughesnet.
By Yulius Suprianto Macroeconomics | 02 Maret 2019 Chapter-5: The Standard of Living Over Time and A Cross Countries Source: http//
Rank Your Ideas The next step is to rank and compare your three high- potential ideas. Rank each one on the three qualities of feasibility, persuasion,
Lecture 8 Normal model.
Wednesday/ September,  There are lots of problems with trade ◦ There may be some ways that some governments can make things better by intervening.
Transcript presentasi:

KONSEP DASAR PROBABILITAS STATISTIK DAN PROBABILISTIK KONSEP DASAR PROBABILITAS BUDHI SETIAWAN TEKNIK SIPIL UNSRI

Kondisi acak Kondisi acak adalah satu kondisi dimana hasil atau keadaan tidak dapat diprediksi Contoh: Status penyakit Anda memiliki penyakit Anda tidak memiliki penyakit Hasil test positif Hasil test negatif

Definisi Probabilitas Probabilitas adalah nilai antara 0 dan 1 yang dituliskan dalam bentuk desimal ataupun pecahan. Secara sederhana, Probability adalah bilangan antara 0 dan 1 yang menunjukkan suatu hasil yang diperoleh dari kondisi acak. Untuk satu susunan kemungkinan yang lengkap dalam kondisi acak, maka total atau jumlah probabilitas adalah harus sama dengan 1.

The Relative Frequency Interpretation of Probability Assigning Probability How likely it is that a particular outcome will be the result of a random circumstance The Relative Frequency Interpretation of Probability In situations that we can imagine repeating many times, we define the probability of a specific outcome as the proportion of times it would occur over the long run -- called the relative frequency of that particular outcome.

Contoh: Probabilitas dalam perencanaan transportasi Banyaknya Mobil Jumlah Pengamatan Frekuensi relative 4 4/60 1 16 16/60 2 20 20/60 3 14 14/60 3/60 5 2/60 6 1/60 7 8 . Di suatu ruas jalan direncanakan untuk membuat jalur khusus belok kanan. Probabilitas 5 mobil menunggu berbelok diperlukan untuk menentukan panjang garis pembagi jalan. Untuk keperluan ini dilakukan survey selama 2 bulan dan diperoleh 60 hasil pengamatan. Probabilitas kejadian 5 mobil menunggu untuk berbelok kanan adalah 3/60 (2/60 + 1/60)

Determining the Relative Frequency (Probability) of an Outcome Method 1: Make an Assumption about the Physical World (there is no bias) A Simple Lottery Choose a three-digit number between 000 and 999. Player wins if his or her three-digit number is chosen. Suppose the 1000 possible 3-digit numbers (000, 001, 002, 999) are equally likely. In long run, a player should win about 1 out of 1000 times. Probability = 0.0001 of winning. This does not mean a player will win exactly once in every thousand plays.

Determining the Relative Frequency (Probability) of an Outcome Method 2: Observe the Relative Frequency of random circumstances The Probability of Lost Luggage “1 in 176 passengers on U.S. airline carriers will temporarily lose their luggage.” This number is based on data collected over the long run. So the probability that a randomly selected passenger on a U.S. carrier will temporarily lose luggage is 1/176 or about 0.006.

Proportions and Percentages as Probabilities Ways to express the relative frequency of lost luggage: The proportion of passengers who lose their luggage is 1/176 or about 0.006 (6 out of 1000). About 0.6% of passengers lose their luggage. The probability that a randomly selected passenger will lose his/her luggage is about 0.006. The probability that you will lose your luggage is about 0.006. Last statement is not exactly correct – your probability depends on other factors (how late you arrive at the airport, etc.).

Estimating Probabilities from Observed Categorical Data Assuming data are representative, the probability of a particular outcome is estimated to be the relative frequency (proportion) with which that outcome was observed. Approximate margin of error for the estimated probability is

Nightlights and Myopia Assuming these data are representative of a larger population, what is the approximate probability that someone from that population who sleeps with a nightlight in early childhood will develop some degree of myopia? Note: 72 + 7 = 79 of the 232 nightlight users developed some degree of myopia. So we estimate the probability to be 79/232 = 0.34. This estimate is based on a sample of 232 people with a margin of error of about 0.066 (1/√232 = ±0.666)

The Personal Probability Interpretation Personal probability of an event = the degree to which a given individual believes the event will happen. Sometimes subjective probability used because the degree of belief may be different for each individual. Restrictions on personal probabilities: Must fall between 0 and 1 (or between 0 and 100%). Must be coherent.

Probability Definitions and Relationships Sample space: collection of unique, nonoverlapping possible outcomes of a random circumstance. Simple event: one outcome in the sample space; a possible outcome of a random circumstance. Event: a collection of one or more simple events in the sample space; often written as A, B, C, and so on.

Assigning Probabilities to Simple Events P(A) = probability of the event A Conditions for Valid Probabilities Each probability is between 0 and 1. The sum of the probabilities over all possible simple events is 1. Equally Likely Simple Events If there are k simple events in the sample space and they are all equally likely, then the probability of the occurrence of each one is 1/k.

Example: Probability of Simple Events Random Circumstance: A three-digit winning lottery number is selected. Sample Space: {000,001,002,003, . . . ,997,998,999}. There are 1000 simple events. Probabilities for Simple Event: Probability any specific three-digit number is a winner is 1/1000. Assume all three-digit numbers are equally likely. Event A = last digit is a 9 = {009,019, . . . ,999}. Since one out of ten numbers in set, P(A) = 1/10. Event B = three digits are all the same = {000, 111, 222, 333, 444, 555, 666, 777, 888, 999}. Since event B contains 10 events, P(B) = 10/1000 = 1/100.