B. Deterministic Finite Automata(DFA) (Otomata Berhingga Deterministik) Pada DFA, dari suatu “state ada tepat satu state berikutnya untuk setiap simbol.

Slides:



Advertisements
Presentasi serupa
Teori Bahasa dan Automata
Advertisements

Pertemuan 6 Minimisasi DFA
Review Materi Widodo.com
Teori Bahasa dan Automata
Penggabungan dan Penyambungan
Teori Bahasa dan Automata
Teori Bahasa dan Otomata 2 sks
Ekuivalensi NDFA ke DFA dan NDFA dengan E-move
Yenni Astuti Version Week-6NFA ke DFA Mengapa NFA ke DFA? NFA lebih mudah dimengerti dan didesain, dibanding DFA. Namun dalam prakteknya, DFA lebih.
Pertemuan 9 Sifat-sifat Bahasa Regular
SUATU FINITE STATE AUTOMATA
Pertemuan 11 PUSH DOWN AUTOMATA (PDA)
Oleh: BAGUS ADHI KUSUMA, ST
MODUL 9 -move Gambar 20. Mesin NFA HUBUNGAN ANTARA
-move Gambar 20. Mesin NFA HUBUNGAN ANTARA
Pertemuan 3 Konversi NFA - DFA dan Konversi ε-NFA - DFA
REGULAR EXPRESSION Yenni Astuti Version
Pertemuan 4 Non Deterministic Finite Automaton (NFA)
Bab VII FINITE STATE AUTOMATA DENGAN OUTPUT.
Session 5 Finite Automata
BAB II FINITE STATE AUTOMATA.
Pertemuan 3 Finite Automata
Pertemuan 2 FINITE AUTOMATA (DFA & NFA)‏
OTOMATA HINGGA.
BAB II FINITE STATE AUTOMATA.
BAB II FINITE STATE AUTOMATA.
Teori Bahasa dan Otomata 2 sks
BAB V EKSPRESI REGULER 1. Penerapan Ekspresi Reguler
TEORI BAHASA DAN AUTOMATA
BAB III EKIVALENSI DFA KE NFA
NON DETERMINISTIC FINITE AUTOMATA DENGAN ε - MOVE
BAB II FINITE STATE AUTOMATA.
BAB II FINITE STATE AUTOMATA.
Non Deterministic Finite Automata dengan є – Move
FINITE STATE AUTOMATA (FSA)
FINITE STATE AUTOMATA (FSA)
Teori-Bahasa-dan-Otomata
BAB II FINITE STATE AUTOMATA.
OTOMATA DAN TEORI BAHASA FORMAL
Finite State Automata: Reduksi Jumlah State
FINITE STATE AUTOMATA (FSA)
Teori Bahasa dan Automata
Teori Bahasa dan Automata
By : Lisda Juliana Pangaribuan
Teori-Bahasa-dan-Otomata
Teori-Bahasa-dan-Otomata
OTOMATA DAN TEORI BAHASA FORMAL
Teori-Bahasa-dan-Otomata
Reduksi Jumlah State pada Finite State Automata
NON DETERMINISTIC FINITE AUTOMATA DENGAN ε - MOVE
OTOMATA DAN TEORI BAHASA FORMAL
BAB II FINITE STATE AUTOMATA.
Pertemuan 6 KONVERSI NFA MENJADI DFA Lanjutan..
Bab VII FINITE STATE AUTOMATA DENGAN OUTPUT.
TEORI BAHASA DAN AUTOMATA
Finite State Automata ♦ model matematika yang dapat menerima input dan mengeluarkan output ♦ Memiliki state yang berhingga banyaknya dan dapat berpindah.
MESIN MOORE *YANI*.
Otomata & Teori Bahasa ( Week 4 )
NFA dengan ε-move.
Erwin Hidayat (M ) UTeM || 2010
Ekuivalensi NFA KE DFA *YANI*.
EKUIVALENSI NFA KE DFA.
OTOMATA DAN TEORI BAHASA 3
Pertemuan4.
Pushdown Automata (PDA)
OTOMATA DAN TEORI BAHASA 8.
Otomata & Teori Bahasa Finite State Automata: - Non Deterministic Finite Automata dengan -move - Penggabungan dan Konkatenasi FSA.
Otomata & Teori Bahasa ( Week 4 )
Reduksi Jumlah State pada Finite State Automata
Otomata & Teori Bahasa ( Week 4 )
Transcript presentasi:

B. Deterministic Finite Automata(DFA) (Otomata Berhingga Deterministik) Pada DFA, dari suatu “state ada tepat satu state berikutnya untuk setiap simbol masukkan yang diterima”. a a b b b q0 q1 q2 a Contoh 1.

Konfigurasi DFA contoh 1, secara formal dinyatakan sebagai berikut : Q = {q0, q1, q2 }  = {a, b} S = q0 F = q2 Fungsi transisi yang ada : δ(q0,a) = q0 δ(q0,b) = q1 δ(q1,a) = q1 δ(q1,b) = q2 δ(q2,a) = q1 δ(q2,b) = q2

Tabel transisi dari fungsi transisi contoh 1. δ a b q0 q1 q2

Non Deterministic Finite Automata ( NFA ) Pada NFA dari suatu “state bisa terdapat 0,1 atau lebih busur keluar/ transisi berlabel simbol input yang sama”. Perbedaan DFA dan NFA ada pada fungsi transisinya, dimana untuk setiap pasangan state input, bisa memiliki 0 atau lebih pilihan untuk state berikutnya.

Suatu string diterima oleh NFA/DFA bila terdapat suatu urutan transisi sehubungan dengan input string tersebut dari state awal menuju state akhir. Untuk NFA, semua kemungkinan yang ada harus dicoba, sampai terdapat satu yang mencapai state akhir. Jadi untuk membuktikan suatu string diterima oleh NFA, harus dibuktikan suatu urutan transisi yang menuju state akhir.

Contoh 1 NFA δ a b q0 {q0,q1} { } q1 a a a q0 q1 b TABEL TRANSISI UNTUK NFA DI ATAS : δ a b q0 {q0,q1} { } q1 Note: { } dan jumlah state lebih dari satu menandakan NFA

Reduksi Jumlah State pada FSA Untuk bahasa reguler, kemungkinan ada sejumlah DFA yang dapat menerima NFA, perbedaannya pada jumlah state yang dimiliki otomata-otomata tersebut. UNTUK APA REDUKSI STATE?? Pilih Otomata dengan jumlah state paling sedikit, dengan tidak mengurangi kemampuannya ‘semula’ untuk menerima suatu bahasa.

Distinguishable ( dapat dibedakan) Distinguishable ( dapat dibedakan). Indistinguishable (tidak dapat dibedakan). State p dan q dikatakan distinguishable jika ada string w   * sehingga sedemikian : δ (q,w)  F sedang δ (p,w)  F atau δ (q,w)  F sedang δ (p,w)  F State p dan q dikatakan indistinguishable jika ada string w   * sehingga sedemikian : δ (q,w)  F sedang δ (p,w)  F δ (q,w)  F sedang δ (p,w)  F

Pasangan dua buah state memiliki salah satu kemungkinan dari distinguishable atau indistinguishable, tetapi tidak kedua-duanya. Jika p dan q indistinguishable, dan jika q dan r juga indistinguishable, maka p dan r juga indistinguishable, dan ketiga state tersebut indistinguishable

Cara untuk mereduksi state dari suatu DFA : Hapus semua state yang tidak dapat dicapai dari state awal, dengan jalan manapun. Catat semua pasangan state (p,q) yang distinguishable. Lakukan pencarian state yang distinguishable. Pasangan-pasangan state lain yang tidak termasuk ke dalam state distinguishable, dapat ditentukan sebagai state yang indistinguishable. Beberapa state yang saling indistinguishable, dapat digabungkan ke dalam satu state. Sesuaikan transisi dari dan ke state-state gabungan tersebut.

CONTOH: q1 1 0,1 q0 1 q2 q4 1 1 q3

LIHAT JAWAB NYA DON’K…. 1. Hapus state yang tidak tercapai -> tidak ada 2. Pasangan distinguishable (q0,q4), (q1,q4), (q2,q4), (q3,q4). 3. Pasangan sisanya (q0,q1), (q0,q2), (q0,q3), (q1,q2) (q1,q3) (q2,q3) pasangan State 1 State 2 Hasil 1 (q0,q1) q1 q3 q2 q4 Distinguishable (q0,q2) (q1,q2) Indistinguishable (q0,q3) (q1,q3) (q2,q3)

Catatan : jumlah pasangan seluruhnya : Prosedur Reduksi DFA 1. Tentukan pasangan status indistinguishable. 2. Gabungkan setiap group indistinguishable state ke dalam satu state dengan relasi pembentukan group secara berantai : Jika p dan q indistingishable dan jika q dan r indistinguishable maka p dan r indistinguishable, dan p,q serta r indistinguishable semua berada dalam satu group. 3. sesuaikan transisi dari dan ke state-state gabungan. Contoh 1. pasangan status indistinguishable (q1,q2), (q1,q3) dan (q2,q3). 2. q1,q2,q3 ketiganya dapat digabung dalam satu state q123 3. Menyesuaikan transisi, sehingga DFA menjadi

Bagaimana fungsi transisinya???... HASIL REDUKSI : 0,1 0,1 1 q0 q123 q4 Bagaimana fungsi transisinya???...

SELESAI