UKURAN PEMUSATAN DAN LETAK DATA

Slides:



Advertisements
Presentasi serupa
UKURAN NILAI PUSAT UKURAN NILAI PUSAT ADALAH UKURAN YG DAPAT MEWAKILI DATA SECARA KESELURUHAN JENIS UKURAN NILAI PUSAT : MEAN , MEDIAN, MODUS KUARTIL,
Advertisements

UKURAN PEMUSATAN Kelas XI IPA Semester 1. UKURAN PEMUSATAN Kelas XI IPA Semester 1.
Teori Graf.
PENYEBARAN DATA Tujuan Belajar :
Statistika Deskriptif: Distribusi Proporsi
Bulan maret 2012, nilai pewarnaan :
UKURAN TENDENSI PUSAT DAN UKURAN LETAK Ir Tito Adi Dewanto
Tugas: Perangkat Keras Komputer Versi:1.0.0 Materi: Installing Windows 98 Penyaji: Zulkarnaen NS 1.

TENDENSI SENTRAL.
UKURAN PEMUSATAN Rata-rata, Median, Modus Oleh: ENDANG LISTYANI.
1 Diagram berikut menyatakan jenis ekstrakurikuler di suatu SMK yang diikuti oleh 400 siswa. Persentase siswa yang tidak mengikuti ekstrakurikuler.
di Matematika SMA Kelas XI Sem 1 Program IPS
(UKURAN PEMUSATAN DAN UKURAN PENYEBARAN)
Uji Non Parametrik Dua Sampel Independen
Fadjar Shadiq, M.App.Sc Widyaiswara PPPPTK Matematika
Mari Kita Lihat Video Berikut ini.
Statistika Deskriptif
Bab 6B Distribusi Probabilitas Pensampelan
DISTRIBUSI FREKUENSI By. Raharjo
BAB V ukuran pemusatan Dipersiapkan oleh : Ely Kurniawati
Oleh Widiyastuti,S.Pd, M.Eng SMA N 3 BOYOLALI
UKURAN PENYEBARAN DATA
1 Nilai rapot Adlina pada semester ganjil adalah sebagai berikut :
Median Lambangnya: Mdn, Me atau Mn
UKURAN PEMUSATAN WAHYU WIDODO. 2 ASSALAAMU ‘ALAIKUM WARAKHMATULLAAHI WABAROKAATUH BISMILLAHIRAHMANIRRAHIM.
By : Meiriyama Program Studi Teknik Informatika Sekolah Tinggi Manajemen Informatika dan Komputer Global Informatika Multi Data Palembang.
Selamat Datang Dalam Kuliah Terbuka Ini
Ukuran Pemusatan dan Ukuran Penyebaran
DISTRIBUSI FREKUENSI oleh Ratu Ilma Indra Putri. DEFINISI Pengelompokkan data menjadi tabulasi data dengan memakai kelas- kelas data dan dikaitkan dengan.
Rabu 23 Maret 2011Matematika Teknik 2 Pu Barisan Barisan Tak Hingga Kekonvergenan barisan tak hingga Sifat – sifat barisan Barisan Monoton.
Ukuran Nilai Pusat Materi 4.
Soal Latihan.
Luas Daerah ( Integral ).
NILAI RATA-RATA (CENTRAL TENDENCY)
UKURAN PEMUSATAN DATA Sub Judul.
PENGUKURAN GEJALA PUSAT / NILAI PUSAT/UKURAN RATA-RATA
OUTLINE BAGIAN I Statistik Deskriptif Pengertian Statistika
Bulan FEBRUARI 2012, nilai pewarnaan :
AREAL PARKIR PEMERINTAH KABUPATEN JEMBRANA
STATISKA Adlina Zhafarina Dea Aninditha Imadina Nur S Raihana Maynisa
UKURAN NILAI SENTRAL.
SESI 2 TABEL DISTRIBUSI FREKUENSI TENDENSI SENTRAL UKURAN PENYEBARAN
DISTRIBUSI FREKUENSI.
Statistika Deskriptif: Distribusi Proporsi
UKURAN PEMUSATAN Rata-rata (average) : B A B V
Nilai Ujian Statistik 80 orang mahasiswa Fapet UNHAS adalah sebagai berikut:
Teknik Numeris (Numerical Technique)
• Perwakilan BKKBN Provinsi Sulawesi Tengah•
Bab 7 Nilai Acuan Norma.
JIKA ORANG INI SAJA BISA APALAGI ENGKAU PASTI LEBIH DARI DIA
UKURAN PEMUSATAN DAN LETAK DATA
DISTRIBUSI PELUANG Pertemuan ke 5.
UKURAN PEMUSATAN MK. STATISTIK (MAM 4137) 3 SKS (3-0)
Sesi-2: DISTRIBUSI FREKUENSI
UKURAN PEMUSATAN Merupakan nilai tunggal yang mewakili semua data atau kumpulan pengamatan dimana nilai tersebut menunjukkan pusat data. Yang termasuk.
UKURAN PEMUSATAN DATA Sub Judul.
UKURAN PEMUSATAN (NILAI SENTRAL) DISPERSI, SKEWNES DAN KURTOSIS
PRESENTASI PEMBELAJARAN MATEMATIKA
STATISTIKA.
PRESENTASI PEMBELAJARAN MATEMATIKA
UKURAN PEMUSATAN DATA BERKELOMPOK
Ukuran Pemusatan Data Choirudin, M.Pd
Ukuran Pemusatan Data Choirudin, M.Pd
DISTRIBUSI FREKUENSI.
UKURAN PEMUSATAN ( Median, dan Modus)
UKURAN PEMUSATAN DAN LETAK DATA
UKURAN PEMUSATAN DATA. Yang dimaksud dengan ukuran pemusatan suatu data adalah rata-rata median modus.
PEMUSATAN DAN LETAK DATA
Powerpoint TemplatesStatistik Ukuran Pemusatan Data.
Transcript presentasi:

UKURAN PEMUSATAN DAN LETAK DATA Oleh : Hanung Nindito Prasetyo

UKURAN PEMUSATAN Nilai tunggal yang mewakili semua data atau kumpulan pengamatan dimana nilai tersebut menunjukkan pusat data. Yang termasuk ukuran pemusatan : Rata-rata hitung Median Modus Rata-rata ukur Rata-rata harmonis

1. RATA-RATA HITUNG Rumus umumnya : Untuk data yang tidak mengulang Untuk data yang mengulang dengan frekuensi tertentu

RATA-RATA HITUNG (lanjutan) 1. Dalam Tabel Distribusi Frekuensi Interval Kelas Nilai Tengah (X) Frekuensi fX 9-21 22-34 35-47 48-60 61-73 74-86 87-99 15 28 41 54 67 80 93 3 4 8 12 23 6 45 112 164 432 804 1840 558 Σf = 60 ΣfX = 3955

RATA-RATA HITUNG (lanjutan) 2. Dengan Memakai Kode (U) Interval Kelas Nilai Tengah (X) U Frekuensi fU 9-21 22-34 35-47 48-60 61-73 74-86 87-99 15 28 41 54 67 80 93 -3 -2 -1 1 2 3 4 8 12 23 6 -9 -8 -4 46 18 Σf = 60 ΣfU = 55

RATA-RATA HITUNG (lanjutan) 3. Berbobot Masing-masing data diberi bobot. Misal A memperoleh nilai 65 untuk tugas, 76 untuk mid dan 70 untuk ujian akhir. Bila nilai tugas diberi bobot 2, Mid 3 dan Ujian Akhir 4, maka rata-rata hitungnya adalah :

2. MEDIAN Untuk data berkelompok

MEDIAN (lanjutan) Contoh : Letak median ada pada data ke 30, yaitu pada interval 61-73, sehingga : L0 = 60,5 F = 19 f = 12 Interval Kelas Frekuensi 9-21 22-34 35-47 48-60 61-73 74-86 87-99 3 4 8 12 23 6 Σf = 60

3. MODUS Untuk data berkelompok

MODUS (lanjutan) Contoh : Data yang paling sering muncul adalah pada interval 74-86, sehingga : L0 = 73,5 b1 = 23-12 = 11 b2 = 23-6 =17 Interval Kelas Frekuensi 9-21 22-34 35-47 48-60 61-73 74-86 87-99 3 4 8 12 23 6 Σf = 60

HUBUNGAN EMPIRIS ANTARA NILAI RATA-RATA HITUNG, MEDIAN, DAN MODUS Ada 3 kemungkinan kesimetrian kurva distribusi data : Jika nilai ketiganya hampir sama maka kurva mendekati simetri. Jika Mod<Med<rata-rata hitung, maka kurva miring ke kanan. Jika rata-rata hitung<Med<Mod, maka kurva miring ke kiri.

Jika distribusi data tidak simetri, maka terdapat hubungan : HUBUNGAN EMPIRIS ANTARA NILAI RATA-RATA HITUNG, MEDIAN, DAN MODUS (lanjutan) Jika distribusi data tidak simetri, maka terdapat hubungan : Rata-rata hitung-Modus = 3 (Rata-rata hitung-Median)

4. RATA-RATA UKUR Digunakan apabila nilai data satu dengan yang lain berkelipatan. Untuk data tidak berkelompok Untuk data berkelompok

RATA-RATA UKUR (lanjutan) Contoh : Interval Kelas Nilai Tengah (X) Frekuensi log X f log X 9-21 22-34 35-47 48-60 61-73 74-86 87-99 15 28 41 54 67 80 93 3 4 8 12 23 6 1,18 1,45 1,61 1,73 1,83 1,90 1,97 3,54 5,8 6,44 13,84 21,96 43,7 11,82 Σf = 60 Σf log X = 107,1

5. RATA-RATA HARMONIS Biasanya digunakan apabila data dalam bentuk pecahan atau desimal. Untuk data tidak berkelompok Untuk data berkelompok

RATA-RATA HARMONIS (lanjutan) Contoh : Interval Kelas Nilai Tengah (X) Frekuensi f / X 9-21 22-34 35-47 48-60 61-73 74-86 87-99 15 28 41 54 67 80 93 3 4 8 12 23 6 0,2 0,143 0,098 0,148 0,179 0,288 0,065 Σf = 60 Σf / X = 1,121

Ukuran Letak

KUARTIL, DESIL, PERSENTIL Kelompok data yang sudah diurutkan (membesar atau mengecil) dibagi empat bagian yang sama besar. Ada 3 jenis yaitu kuartil pertama (Q1) atau kuartil bawah, kuartil kedua (Q2) atau kuartil tengah, dan kuartil ketiga (Q3) atau kuartil atas.

KUARTIL (lanjutan) Untuk data tidak berkelompok Untuk data berkelompok L0 = batas bawah kelas kuartil F = jumlah frekuensi semua kelas sebelum kelas kuartil Qi f = frekuensi kelas kuartil Qi

KUARTIL (lanjutan) Contoh : Q1 membagi data menjadi 25 % Sehingga : Q1 terletak pada 48-60 Q2 terletak pada 61-73 Q3 terletak pada 74-86 Interval Kelas Nilai Tengah (X) Frekuensi 9-21 22-34 35-47 48-60 61-73 74-86 87-99 15 28 41 54 67 80 93 3 4 8 12 23 6 Σf = 60

KUARTIL (lanjutan) Untuk Q1, maka : Untuk Q2, maka : Untuk Q3, maka :

KUARTIL, DESIL, PERSENTIL (lanjutan) Kelompok data yang sudah diurutkan (membesar atau mengecil) dibagi sepuluh bagian yang sama besar.

DESIL (lanjutan) Untuk data tidak berkelompok Untuk data berkelompok L0 = batas bawah kelas desil Di F = jumlah frekuensi semua kelas sebelum kelas desil Di f = frekuensi kelas desil Di

DESIL (lanjutan) Contoh : D3 membagi data 30% D7 membagi data 70% Sehingga : D3 berada pada 48-60 D7 berada pada 74-86 Interval Kelas Nilai Tengah (X) Frekuensi 9-21 22-34 35-47 48-60 61-73 74-86 87-99 15 28 41 54 67 80 93 3 4 8 12 23 6 Σf = 60

DESIL (lanjutan)

KUARTIL, DESIL, PERSENTIL (lanjutan) Untuk data tidak berkelompok Untuk data berkelompok