Chapter 11 k- Fold Cross Validation

Slides:



Advertisements
Presentasi serupa
Pengujian Hipotesis untuk Satu dan Dua Varians Populasi
Advertisements

BAB 8 Estimasi Interval Kepercayaan
Kelompok 1 - 2A Sekolah Tinggi Ilmu Statistik
Uji Hipotesis Dua Populasi
Pengujian Hipotesis.
Pendugaan Parameter.
Modul-8 : Algoritma dan Struktur Data
BUDIYONO Program Pascasarjana UNS
2. Introduction to Algorithm and Programming
Chapter 10 ALGORITME for ASSOCIATION RULES
Bayesian: Multi-Parameter Model
Chapter 9 ALGORITME Cluster dan WEKA
Relation
BUDIYONO Program Pascasarjana UNS
Varable Control Chart Individual, Cumulative Sum, Moving-Average, Geometric Moving-Average, Trend, Modified, Acceptance.
BLACK BOX TESTING.
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
Testing Implementasi Sistem Oleh :Rifiana Arief, SKom, MMSI
Data Mining: Klasifikasi dan Prediksi Naive Bayesian & Bayesian Network . April 13, 2017.
1 Pertemuan 02 Ukuran Pemusatan dan Lokasi Matakuliah: I Statistika Tahun: 2008 Versi: Revisi.
1 Diselesaikan Oleh KOMPUTER Langkah-langkah harus tersusun secara LOGIS dan Efisien agar dapat menyelesaikan tugas dengan benar dan efisien. ALGORITMA.
Pendugaan Parameter Proporsi dan Varians (Ragam) Pertemuan 14 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
1 Pertemuan 10 Fungsi Kepekatan Khusus Matakuliah: I0134 – Metode Statistika Tahun: 2007.
PENDUGAAN PARAMETER Pertemuan 7
Pertemuan 07 Peluang Beberapa Sebaran Khusus Peubah Acak Kontinu
MULTIPLE REGRESSION ANALYSIS THE THREE VARIABLE MODEL: NOTATION AND ASSUMPTION 08/06/2015Ika Barokah S.
1 Pertemuan 15 Game Playing Matakuliah: T0264/Intelijensia Semu Tahun: Juli 2006 Versi: 2/1.
1 HAMPIRAN NUMERIK SOLUSI PERSAMAAN LANJAR Pertemuan 5 Matakuliah: K0342 / Metode Numerik I Tahun: 2006 TIK:Mahasiswa dapat meghitung nilai hampiran numerik.
1 Pertemuan 12 WIDROW HOFF LEARNING Matakuliah: H0434/Jaringan Syaraf Tiruan Tahun: 2005 Versi: 1.
Pertemuan 14 Algoritma Pergantian Page (lanjutan)
4- Classification: Logistic Regression 9 September 2015 Intro to Logistic Regression.
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
Ukuran Pemusatan dan Lokasi Pertemuan 03 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
STATISTICAL INFERENCE PART VI HYPOTHESIS TESTING 1.
Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 9 Relational Database Design by ER- to-Relational Mapping.
Jartel, Sukiswo Sukiswo
PROBABILITY DISTRIBUTION
DISTRIBUSI BINOMIAL.
STATISTIKA CHATPER 4 (Perhitungan Dispersi (Sebaran))
Statistik TP A Pengujian Hipotesis Satu Populasi (Mean dan Proporsi)
KOMUNIKASI DATA Materi Pertemuan 3.
PEMBUATAN POHON KEPUTUSAN
Pengujian Hipotesis (I) Pertemuan 11
Matakuliah : I0014 / Biostatistika Tahun : 2005 Versi : V1 / R1
Uji Hipotesis Dua Sampel
DISTRIBUSI BINOMIAL.
Pertemuan 25 Uji Kesamaan Proporsi
Presentasi Statistika Dasar
Pendugaan Parameter (I) Pertemuan 9
PENDUGAAN PARAMETER Pertemuan 8
Significantly Significant
t(ea) for Two Tests Between the Means of Different Groups
T(ea) for Two Again Tests Between the Means of Related Groups
Pendugaan Parameter (II) Pertemuan 10
REAL NUMBERS EKSPONENT NUMBERS.
Uji Kesamaan Proporsi dan Uji Kebebasan Pertemuan 24
Pertemuan 09 Pengujian Hipotesis 2
Research methodology and Scientific Writing W#8
Fungsi Kepekatan Peluang Khusus Pertemuan 10
An Introducation to Inferential Statistics
Eksperimen Satu Faktor: (Disain RAL)
Master data Management
SAHAM GRUP ASTRA PERIODE JULI 2009 S.D. MARET 2010
Pertemuan 21 dan 22 Analisis Regresi dan Korelasi Sederhana
STATISTIK “Hypothesis Testing”
Simultaneous Linear Equations
KULIAH KE 9 Elementary Statistics Eleventh Edition
Lesson 2-1 Conditional Statements 1 Lesson 2-1 Conditional Statements.
Hypothesis Testing Niniet Indah Arvitrida, ST, MT SepuluhNopember Institute of Technology INDONESIA 2008.
Transcript presentasi:

Chapter 11 k- Fold Cross Validation Comparison Technique Step Case Definition Sulidar Fitri, M.Sc

REFERENCES Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques. 2006. Department of Computer Science University of Illinois at Urbana-Champaign. www.cs.uiuc.edu/~hanj Ian H. Witten, Eibe Frank, Mark A. Hall. Data Mining Practical Machine Learning Tools and Techniques Third Edition.2011. Elsevier WEKA Any Online Resources

Classification Measurements Classification Accuracy (%) : Testing accuracy

CROSS VALIDATION Merupakan metode statistic untuk meng-evaluasi dan membandingkan akurasi Learning algorithm dengan cara membagi dataset menjadi 2 bagian: Satu bagian digunakan untuk training model, Bagian yang lain untuk mem-validasi model Suatu dataset akan dibagi sesuai dengan banyaknya k, dan akan di test bergantian hingga seluruh bagian terpenuhi.

Disjoint Validation Data Sets Full Data Set Validation Data Training Data 1st partition

k-fold Cross Validation In k-fold cross-validation the data is first partitioned into k equally (or nearly equally) sized segments or folds. Subsequently k iterations of training and validation are performed such that within each iteration a different fold of the data is held-out for validation while the remaining k - 1 folds are used for learning. Fig. 1 demonstrates an example with k = 3. The darker section of the data are used for training while the lighter sections are used for validation. In data mining and machine learning 10-fold cross-validation (k = 10) is the most common.

k-fold Cross Validation

k-fold Cross Validation

Paired t-Test Collect data in pairs: Example: Given a training set DTrain and a test set DTest, train both learning algorithms on DTrain and then test their accuracies on DTest. Suppose n paired measurements have been made Assume The measurements are independent The measurements for each algorithm follow a normal distribution The test statistic T0 will follow a t-distribution with n-1 degrees of freedom

Paired t-Test cont Null Hypothesis: H0: µD = Δ0 Test Statistic: Trial # Algorithm 1 Accuracy X1 Algorithm 2 X2 1 X11 X21 2 X12 X22 … .. n X1N X2N Null Hypothesis: H0: µD = Δ0 Test Statistic: Assume: X1 follows N(µ1,σ1) X2 follows N(µ2,σ2) Let: µD = µ1 - µ2 Di = X1i - X2i i=1,2,...,n Rejection Criteria: H1: µD ≠ Δ0 |t0| > tα/2,n-1 H1: µD > Δ0 t0 > tα,n-1 H1: µD < Δ0 t0 < -tα,n-1

Cross Validated t-test Paired t-Test on the 10 paired accuracies obtained from 10-fold cross validation Advantages Large train set size Most powerful (Diettrich, 98) Disadvantages Accuracy results are not independent (overlap) Somewhat elevated probability of type-1 error (Diettrich, 98)   …

Student’s distribution With small samples (k < 100) the mean follows Student’s distribution with k–1 degrees of freedom Confidence limits: 9 degrees of freedom normal distribution 0.88 20% 1.38 10% 1.83 5% 2.82 3.25 4.30 z 1% 0.5% 0.1% Pr[X  z] 0.84 20% 1.28 10% 1.65 5% 2.33 2.58 3.09 z 1% 0.5% 0.1% Pr[X  z] Assuming we have 10 estimates Data Mining: Practical Machine Learning Tools and Techniques (Chapter 5) 12 12

Distribution of the differences Let md = mx – my The difference of the means (md) also has a Student’s distribution with k–1 degrees of freedom Let sd2 be the variance of the difference The standardized version of md is called the t- statistic: We use t to perform the t-test 13 13

Contoh: Jika dimiliki data : 210, 340, 525, 450, 275 maka variansi dan standar deviasinya : mean = (210, 340, 525, 450, 275)/5 = 360 variansi dan standar deviasi berturut-turut :

Performing the test Fix a significance level If a difference is significant at the a% level, there is a (100-a)% chance that the true means differ Divide the significance level by two because the test is two-tailed Look up the value for z that corresponds to a/2 If t  –z or t z then the difference is significant I.e. the null hypothesis (that the difference is zero) can be rejected 15 15

Do Comparison !! Lakukan penghitungan perbandingan akurasi dari dua algorithma!

Any Queries ?