Perceptron.

Slides:



Advertisements
Presentasi serupa
(Jaringan Syaraf Tiruan) ANN (Artificial Neural Network)
Advertisements

JARINGAN SYARAF TIRUAN
Algoritma JST Backpropagation
Praktikum Metkuan Jaringan Syaraf Tiruan Propagasi Balik
Yanu Perwira Adi Putra Bagus Prabandaru
METODE HEBB~3 Sutarno, ST. MT..
Pengenalan Jaringan Syaraf Tiruan
JaRINGAN SARAF TIRUAN (Neural Network)
Ir. Endang Sri Rahayu, M.Kom.
Jaringan Syaraf Tiruan (JST)
PERCEPTRON Arsitektur jaringannya mirip dengan Hebb
JST BACK PROPAGATION.
Jaringan Syaraf Tiruan
Rosenblatt 1962 Minsky – Papert 1969
Jaringan Syaraf Tiruan (JST)
Jaringan Syaraf Tiruan
%Program Hebb AND Hasil (Contoh Soal 1.5)
Konsep dasar Algoritma Contoh Problem
MULTILAYER PERCEPTRON
JARINGAN SARAF TIRUAN LANJUTAN
MODEL JARINGAN PERCEPTRON
PENGANTAR JARINGAN SYARAF TIRUAN (JST)
Jaringan Syaraf Tiruan (JST) stiki. ac
Pertemuan 10 Neural Network
JST BACK PROPAGATION.
Jarringan Syaraf Tiruan
Pertemuan 3 JARINGAN PERCEPTRON
SISTEM CERDAS Jaringan Syaraf Tiruan
Week 2 Hebbian & Perceptron (Eka Rahayu S., M. Kom.)
Artificial Intelligence Oleh Melania SM
BACK PROPAGATION.
PEMBELAJARAN MESIN STMIK AMIKOM PURWOKERTO
Pertemuan 12 ARTIFICIAL NEURAL NETWORKS (ANN) - JARINGAN SYARAF TIRUAN - Betha Nurina Sari, M.Kom.
Perceptron Algoritma Pelatihan Perceptron:
Pelatihan BACK PROPAGATION
JST (Jaringan Syaraf Tiruan)
Week 3 BackPropagation (Eka Rahayu S., M. Kom.)
Fungsi Aktivasi JST.
Jaringan Syaraf Tiruan
JST PERCEPTRON.
JARINGAN SYARAF TIRUAN SISTEM BERBASIS PENGETAHUAN
Aplikasi Kecerdasan Komputasional
Anatomi Neuron Biologi
Jaringan Syaraf Tiruan Artificial Neural Networks (ANN)
Jaringan Syaraf Tiruan
Jaringan Syaraf Tiruan (JST)
Jaringan Syaraf Tiruan (Artificial Neural Networks)
MLP Feed-Forward Back Propagation Neural Net
Artificial Intelligence (AI)
Jaringan Syaraf Tiruan Artificial Neural Networks (ANN)
Struktur Jaringan Syaraf Tiruan
D. Backpropagation Pembelajaran terawasi dan biasa digunakan perceptron dengan banyak lapisan untuk mengubah bobot-bobot yang terhubung dengan neuron-neuron.
Jawaban Tidak harus bernilai = 1. tergantung kesepakatan
Jaringan Syaraf Tiruan
Artificial Neural Network
Neural Network.
JARINGAN SYARAF TIRUAN
Pelatihan BACK PROPAGATION
Pertemuan 12 ARTIFICIAL NEURAL NETWORKS (ANN) - JARINGAN SYARAF TIRUAN - Betha Nurina Sari, M.Kom.
Jaringan Syaraf Tiruan
JARINGAN SYARAF TIRUAN
Pengenalan Pola secara Neural (PPNeur)
JARINGAN SYARAF TIRUAN
Single-Layer Perceptron
JARINGAN SYARAF TIRUAN
Jaringan Syaraf Tiruan
JARINGAN SYARAF TIRUAN BERBASIS KOMPETISI
Arsitektur jaringan Hebb Jaringan syaraf tiruan
Teori Bahasa Otomata (1)
This presentation uses a free template provided by FPPT.com Pengenalan Pola Sinyal Suara Manusia Menggunakan Metode.
Transcript presentasi:

Perceptron

Merupakan bentuk jaringan syaraf yang sederhana Metode yang biasa digunakan untuk mengklasifikasikan suatu tipe pola tertentu yang sering dikenal dengan pemisahan secara linier. Perceptron pada Jaringan Syaraf Tiruan (JST) dengan 1 lapisan mempunyai bobot yang bisa diatur dan suatu nilai ambang (threshold). Nilai threshold (θ) pada fungsi aktivasi adalah non negative.

ALGORITMA

Hasil dari langkah 3 c s/d 4b dapat disajikan dalam bentuk tabel berikut :

Karena semua nilai t1= Y1 untuk setiap data, maka proses iterasi stop. Karena semua nilai t1 Y1 untuk setiap data, maka dilanjutkan ke iterasi berikutnya. Iterasi 2 : Karena semua nilai t1= Y1 untuk setiap data, maka proses iterasi stop.

Hasil dari langkah 5 dapat disajikan dalam bentuk table berikut :

Ciri dari Pembelajaran Perceptron : Menggunakan bias. Menggunakan α dan θ. Menggunakan iterasi (perulangan) untuk setiap data input. Nilai Y_inj danYj digunakan dalam proses pembelajaran dan untuk melakukan pembuktian. Fungsi keanggotaan yang digunakan adalah Fungsi Undak Biner (hardlim) dengan θ atau Fungsi Undak Bipolar dengan θ.