Himpunan Pertemuan Minggu 1.

Slides:



Advertisements
Presentasi serupa
Matematika Diskrit (Solusi pertemuan 6)
Advertisements

Matematika Diskrit Dr.-Ing. Erwin Sitompul
Persamaan linear satu variabel
CARA MENYATAKAN HIMPUNAN
BAB II HIMPUNAN.
Dasar Logika Matematika
Waniwatining II. HIMPUNAN 1. Definisi
MATEMATIKA BISNIS HIMPUNAN.
Himpunan.
MATEMATIKA BISNIS HIMPUNAN.
MATEMATIKA BISNIS by : Dien Novita
Matematika Informatika 1
Bahan kuliah IF2120 Matematika Diskrit
MATEMATIKA BISNIS BY : ERVI COFRIYANTI.
LOGIKA MATEMATIKA PERTEMUAN 2 HIMPUNAN II
BAB II HIMPUNAN.
PANGKAT, AKAR & LOGARITMA
Pangkat, Akar dan Logaritma
Matematika Diskrit bab 2-Himpunan
Matematika Diskrit bab 2-Himpunan
HIMPUNAN Rani Rotul Muhima.
Pertemuan ke 4.
DPH1A3-Logika Matematika
HIMPUNAN.
Bahan kuliah Matematika Diskrit
Oleh : Devie Rosa Anamisa
Pertemuan ke 4.
MATEMATIKA DISKRIT PERTEMUAN KE 2 SAFITRI JAYA, S.Kom, M.T.I
TEORI HIMPUNAN sugiyono.
Matematika Diskrit bab 2-Himpunan
Pendahuluan (Himpunan dan Sub himpunan)
Bahan kuliah Matematika Diskrit
Bahan kuliah Agribisnis study club Frogram Study Agribisnis
BAB 1 Himpunan
Matematika Diskrit bab 2-Himpunan
Pendahuluan.
MATEMATIKA BISNIS & EKONOMI
Matematika Diskrit Himpunan Sri Nurhayati.
HIMPUNAN MATEMATIKA EKONOMI 1.
Matematika Diskrit (1) Himpunan.
Himpunan Himpunan adalah kumpulan objek-objek yang berbeda.
Matematika Diskrit bab 2-Himpunan
PANGKAT AKAR DAN LOGARITMA
Pendahuluan.
MATEMATIKA EKONOMI Pertemuan 2: Himpunan dan Sistem Bilangan
BAB II HIMPUNAN.
IF34220 Matematika Diskrit Nelly Indriani W. S.Si., M.T
Pertemuan III Himpunan
Mata Kuliah: MATEMATIKA DISKRIT Harni Kusniyati
Matematika Diskrit Himpunan
BAB II HIMPUNAN.
HIMPUNAN.
MATEMATIKA EKONOMI Pertemuan 2: Himpunan dan Sistem Bilangan
Pangkat, Akar dan Logaritma
HIMPUNAN Oleh Cipta Wahyudi.
Himpunan.
MATEMATIKA EKONOMI Pertemuan 2: Himpunan dan Sistem Bilangan
Pangkat, Akar dan Logaritma
Matematika Diskrit Himpunan Sri Nurhayati.
HIMPUNAN.
Himpunan.
Heru Nugroho, S.Si., M.T. No Tlp : Semester Ganjil TA
Logika Matematika Himpunan Sri Nurhayati.
Dasar Logika Matematika
BAB 1 Himpunan
BAB 1 HIMPUNAN.
BAB 1 HIMPUNAN.
1 Himpunan Bahan kuliah Matematika Diskrit. 2 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen,
Matematika Diskrit bab 2-Himpunan Himpu nan Oleh : Sri Supatmi,S.Kom.
1 Himpunan Bahan kuliah IF2091 Struktur Diskrit. 2 Definisi Himpunan (set) adalah kumpulan objek-objek yang berbeda. Objek di dalam himpunan disebut elemen,
Transcript presentasi:

Himpunan Pertemuan Minggu 1

Definisi Himpunan adalah sekumpulan objek yang mempunyai syarat tertentu dan jelas. Objek di dalam himpunan disebut elemen, unsur, atau anggota. HMTRR adalah contoh sebuah himpunan, di dalamnya berisi anggota berupa mahasiswa TRR. Tiap mahasiswa berbeda satu sama lain.

Satu set huruf (besar dan kecil)

Cara Penyajian Himpunan Enumerasi Setiap anggota himpunan didaftarkan secara rinci. Contoh 1. - Himpunan empat bilangan asli pertama: A = {1, 2, 3, 4}. - Himpunan lima bilangan genap positif pertama: B = {4, 6, 8, 10}. - C = {kucing, a, Amir, 10, paku} - R = { a, b, {a, b, c}, {a, c} } - C = {a, {a}, {{a}} } - K = { {} } - Himpunan 100 buah bilangan asli pertama: {1, 2, ..., 100 } - Himpunan bilangan bulat ditulis sebagai {…, -2, -1, 0, 1, 2, …}.

Keanggotaan x  A : x merupakan anggota himpunan A; x  A : x bukan merupakan anggota himpunan A.    Contoh 2. Misalkan: A = {1, 2, 3, 4}, R = { a, b, {a, b, c}, {a, c} } K = {{}} maka 3  A {a, b, c}  R c  R {}  K {}  R

Contoh 3. Bila P1 = {a, b}, P2 = { {a, b} }, P3 = {{{a, b}}}, maka P1  P2 P1  P3 P2  P3

Simbol-simbol Baku P = himpunan bilangan bulat positif = { 1, 2, 3, ... } N = himpunan bilangan alami (natural) = { 1, 2, ... } Z = himpunan bilangan bulat = { ..., -2, -1, 0, 1, 2, ... } Q = himpunan bilangan rasional R = himpunan bilangan riil C = himpunan bilangan kompleks Himpunan yang universal: semesta, disimbolkan dengan U atau S. Contoh: Misalkan S = {1, 2, 3, 4, 5} dan A adalah himpunan bagian dari S, dengan A = {1, 3, 5}.

3. Notasi Pembentuk Himpunan

Diagram Venn Contoh 5. Misalkan S = {1, 2, …, 7, 8}, A = {1, 2, 3, 5} dan B = {2, 5, 6, 8}. Diagram Venn: S 1 2 5 3 6 8 4 7 A B

Kardinalitas Jumlah elemen di dalam A disebut kardinal dari himpunan A. Notasi: n(A) atau A    Contoh 6. (i) B = { x | x merupakan bilangan prima lebih kecil dari 20 }, atau B = {2, 3, 5, 7, 11, 13, 17, 19} maka B = 8 (ii) T = {kucing, a, Amir, 10, paku}, maka T = 5 (iii) A = {a, {a}, {{a}} }, maka A = 3

Himpunan kosong (null set)

Himpunan Bagian (Subset)

Latihan Misalkan A = {1, 2, 3} dan B = {1, 2, 3, 4, 5}. Tentukan semua kemungkinan himpunan C sedemikian sehingga A  C dan C  B, yaitu A adalah proper subset dari C dan C adalah proper subset dari B.

Jawaban: C harus mengandung semua elemen A = {1, 2, 3} dan sekurang-kurangnya satu elemen dari B. Dengan demikian, C = {1, 2, 3, 4} atau C = {1, 2, 3, 5}. C tidak boleh memuat 4 dan 5 sekaligus karena C adalah proper subset dari B.

Himpunan yang Sama

Himpunan yang Ekivalen

Himpunan Saling Lepas

Himpunan Kuasa

Operasi Terhadap Himpunan

Pangkat, Akar dan Logaritma

Pada Pertemuan kali ini, kita akan mempelajari …………. Pangkat Kaidah pemangkatan bilangan Kaidah perkalian bilangan berpangkat Kaidah pembagian bilangan berpangkat Akar Kaidah pengakaran bilangan Kaidah penjumlahan bilangan terakar Kaidah perkalian bilangan terakar Kaidah pembagian bilangan terakar Logaritma - Basis Logaritma - Kaidah-kaidah Logaritma - Penyelesaian Persamaan dengan Logaritma

Pangkat Pangkat dari sebuah bilangan ialah suatu indeks yang menunjukkan banyaknya perkalian bilangan yang sama secara berurutan. Notasi xa : bahwa x harus dikalikan dengan x itu sendiri secara berturut-turut sebanyak a kali.

Kaidah Pemangkatan Bilangan

Kaidah perkalian bilangan berpangkat

Kaidah pembagian bilangan berpangkat

Akar Akar merupakan bentuk lain untuk menyatakan bilangan berpangkat. Akar dari sebuah bilangan ialah basis (x) yang memenuhi bilangan tersebut berkenaan dengan pangkat akarnya (a). Bentuk umum : m = radikan

Kaidah pengakaran bilangan

Kaidah penjumlahan (pengurangan) bilangan terakar Bilangan-bilangan terakar hanya dapat ditambahkan atau dikurangkan apabila akar-akarnya sejenis.

Kaidah perkalian bilangan terakar

Kaidah pembagian bilangan terakar Hasil bagi bilangan-bilangan terakar adalah akar dari hasil bagi bilangan-bilangannya. Pembagian hanya dapat dilakukan apabila akar-akarnya berpangkat sama.

Logaritma Logaritma pada hakekatnya merupakan kebalikan dari proses pemangkatan dan/atau pengakaran. Suku-suku pada ruas kanan menunjukkan bilangan yang dicari atau hendak dihitung pada masing-masing bentuk

Basis Logaritma Logaritma dapat dihitung untuk basis berapapun. Biasanya berupa bilangan positif dan tidak sama dengan satu. Basis logaritma yang paling lazim dipakai adalah 10 (common logarithm)/(logaritma briggs) logm berarti 10 log m, log 24 berarti 10 log 24 Logaritma berbasis bilangan e (2,72) disebut bilangan logaritma alam (natural logarithm) atau logaritma Napier ln m berarti elogm

Kaidah-kaidah Logaritma

Penyelesaian Persamaan dengan Logaritma Logaritma dapat digunakan untuk mencari bilangan yang belum diketahui (bilangan anu) dalam sebuah persamaan, khususnya persamaan eksponensial dan persamaan logaritmik. Persamaan logaritmik ialah persamaan yang bilangan anunya berupa bilangan logaritma, sebagai contoh : log (3x + 298) = 3

Latihan Dengan melogaritmakan kedua ruas, hitunglah x untuk 3x+1 = 27 Selesaikan x untuk log (3x + 298) =3