KETIDAKPASTIAN PERTEMUAN 6.

Slides:



Advertisements
Presentasi serupa
Pemberian Alasan Yang Tidak Eksak
Advertisements

KETIDAKPASTIAN.
Certainty Factor (CF) Dr. Kusrini, M.Kom.
Contoh Kasus Fuzzy dalam menentukan Jumlah Produksi Barang berdasarkan Jumlah Permintaan konsumen dan Jumlah Barang yang tersedia di gudang.
Teorema Bayes.
Pendugaan Parameter.
Permasalahan suhu pada ampermeter
Team Teaching Faktor Kepastian.
Pendugaan Parameter.
Mengatasi Ketidakpastian (Uncertainty)
Metode Inferensi dan Penalaran
RANCANG BANGUN APLIKASI DIAGNOSIS PENYAKIT HEPATITIS MENGGUNAKAN CERTAINTY FACTOR Oleh: Erista Pramana
SISTEM PAKAR UNTUK MENDIAGNOSIS GANGGUAN JIWA SKIZOFRENIA MENGGUNAKAN METODE FUZZY EXPERT SYSTEM (STUDI KASUS RS. JIWA MENUR SURABAYA) Alfian Angga Pradika.
PENGUJIAN HIPOTESA Probo Hardini stapro.
KETIDAKPASTIAN PERTEMUAN 14.
MOTOR INFERENSI.
Probabilitas Bagian 2.
BAB XII PROBABILITAS (Aturan Dasar Probabilitas) (Pertemuan ke-27)
Pertemuan X “INFERENSI DENGAN KETIDAK PASTIAN”
Ketidakpastian Stmik-mdp, Palembang
FAKTOR KEPASTIAN (CERTAINTY FACTOR)
Team Teaching Ketidakpastian.
Kuliah Sistem Pakar “INFERENSI DENGAN KETIDAK PASTIAN”
KONSEP DASAR PROBABILITAS
BAB V PENGUJIAN HIPOTESIS
KONSEP DASAR PROBABILITAS
BAB 2 ATURAN DASAR PROBABILITAS
Market Basket Analysis - #3
Pertemuan 11 “INFERENSI DENGAN KETIDAK PASTIAN”
KECERDASAN BUATAN (Artificial Intelligence) Materi 4
KETIDAKPASTIAN (UNCERTAINTY)
WEBSITE SISTEM PAKAR UNTUK DIAGNOSA PENYAKIT HEPATITIS Danang Yulianto, for further detail, please visit
1 Pertemuan 10 Statistical Reasoning Matakuliah: T0264/Inteligensia Semu Tahun: Juli 2006 Versi: 2/1.
Teorema Bayes - #4 PAC175 (3 sks) DATA MINING Nurdin Bahtiar, S.Si, MT.
KETIDAKPASTIAN PERTEMUAN 7.
1 Pertemuan 7 Ketidakpastian dalam Rules Matakuliah: H0383/Sistem Berbasis Pengetahuan Tahun: 2005 Versi: 1/0.
PROBABILITAS BERSYARAT
Pertemuan 6 SISTEM PAKAR.
Probabilitas & Teorema Bayes
Teorema Bayes - #4 PAC175 (3 sks) DATA MINING Nurdin Bahtiar, S.Si, MT.
Faktor keTIDAKpastian (cf)
Teori PROBABILITAS.
Certainty Factors (CF) And Beliefs
Penanganan Ketidakpastian
Sistem Pakar Ketidakpastian
Teorema Bayes.
Teori PROBABILITAS.
KETIDAKPASTIAN PERTEMUAN 7.
TEORI PROBABILITAS.
Ketidakpastian & Kepastian (REASONING)
Fakultas Ilmu Komputer
Metode penanganan ketidakpastian dengan sistem pakar
INFERENSI DENGAN KETIDAKPASTIAN
Teori PROBABILITAS.
Pertemuan 7 KETIDAKPASTIAN
Penanganan Ketidakpastian
Faktor keTIDAKpastian (Uncertainty)
Pertemuan 5 Kecerdasan Buatan
Faktor Kepastian (Certainty)
Sistem Berbasis Pengetahuan
BAYES 17/9/2015 Kode MK : MK :.
Pertemuan 11 Statistical Reasoning
Pert 7 KETIDAKPASTIAN.
Pertemuan 6 SISTEM PAKAR.
CERTAINTY FACTOR DSS - Wiji Setiyaningsih, M.Kom.
Certainty Factor (CF) Dr. Kusrini, M.Kom.
Uncertainty Representation (Ketidakpastian).
Probabilitas & Teorema Bayes
Pertemuan 6 SISTEM PAKAR.
Kuliah Sistem Pakar Pertemuan VII “INFERENSI DENGAN KETIDAK PASTIAN”
Transcript presentasi:

KETIDAKPASTIAN PERTEMUAN 6

Ketidakpastian Ketidakpastian data - informasi atau data diperoleh tdk lengkap - tidak dapat dipercaya sepenuhnya - berasal dari berbagai sumber dan saling bertolak belakang - bahasa penyajiannya kurang tepat Ketidakpastian dlm proses inferensi, rule berdasarkan pengamatan pakar saja

Teorema Bayes Teorema Bayes adalah sebuah pendekatan untuk sebuah ketidaktentuan yang diukur dengan probabilitas. Teorema bayes dikemukakan oleh Thomas Bayes.

Teorema Bayes Dimana Probabilitas Bersyarat: P(x | h) Bentuk umum teorema Bayes: (evidence tunggal dan hipotesis tunggal) atau Dimana Probabilitas Bersyarat: P(x | h) menyatakan peluang munculnya x jika diketahui h. dan:

Contoh 1 Diketahui suatu kondisi sbb: Peluang munculnya cacat jika diambil produk dari pabrik A adalah: Jika secara random diambil dan ternyata hasilnya cacat, maka peluang barang yang terambil tsb dari pabrik A adalah:

Teorema Bayes (Probabilitas Bersyarat) evidence tunggal dan hipotesis ganda) P(hi) * P(x| hi) P(hi | x) = P(x | h1) * P(h1) + .... + P(x | hn) * P(hn) dimana P(h1) + P(h2) + .... + P(hn) = 1

Teorema Bayes (Probabilitas Bersyarat) Contoh : Si Ani mengalami gejala ada bintik-bintik di wajahnya. Dokter menduga bahwa Si Ani terkena cacar dengan : Probabilitas munculnya bintik-bintik di wajah, jika Si Ani terkena cacar; p(Bintik2| Cacar) = 0.8 Probabilitas Si Ani terkena cacar tanpa memandang gejala apapun; p(Cacar) = 0.4 Probabilitas munculnya bintik-bintik di wajah, jika Si Ani alergi; p(Bintik2| Alergi) = 0.3 Probabilitas Si Ani terkena alergi tanpa memandang gejala apapun; p(Alergi) = 0.7 Probabilitas munculnya bintik-bintik di wajah, jika Si Ani jerawatan; p(Bintik2| Jerawatan) = 0.9 Probabilitas Si Ani jerawatan tanpa memandang gejala apapun; p(Jerawatan) = 0.5

Teorema Bayes (Probabilitas Bersyarat) Hitung Probabilitas Si Ani terkena cacar karena ada bintik-bintik di wajahnya P(Cacar|Bintik2) = p(Bintik2| Cacar)* p(Cacar) p(Bintik2|Cacar)*p(Cacar)+p(Bintik2|Alergi)*p(Alergi)+ p(Bintik2| Jerawatan)* p(Jerawatan) = (0.8 * 0.4) / ((0.8*0.4) + (0.3 * 0.7) + (0.9 * 0.5)) = 0.32 / 0.32 + 0.21 + 0.45 = 0.327

Teorema Bayes (Probabilitas Bersyarat) Hitung Probabilitas Si Ani terkena alergi karena ada bintik-bintik di wajahnya P(Alergi|Bintik2) = p(Bintik2| Alergi)* p(Alergi) p(Bintik2|Cacar)*p(Cacar)+p(Bintik2|Alergi)*p(Alergi)+ p(Bintik2| Jerawatan)* p(Jerawatan) = 0.214

Teorema Bayes (Probabilitas Bersyarat) Hitung Probabilitas Si Ani terkena jerawatan karena ada bintik-bintik di wajahnya P(Jerawat|Bintik2) = p(Bintik2| Jerawat)* p(Jerawat) p(Bintik2|Cacar)*p(Cacar)+p(Bintik2|Alergi)*p(Alergi)+ p(Bintik2| Jerawatan)* p(Jerawatan) = 0.459

Certainty Factors (CF) And Beliefs Meyatakan kepercayaan dalam suatu “event”  Taksiran Pakar Ukuran keyakinan pakar  fakta tertentu benar atau salah Perbedaan “nilai kepercayan” dengan “nilai ketidak percayaan

Certainty Factors And Beliefs (lanjutan) Cara mendapatkan tingkat keyakinan (CF) Metode “Net Belief” Certainty factors menyatakan belief dalam suatu event (atau fakta, atau hipotesis) didasarkan kepada evidence (atau expert’s assessment) CF = certainty factor MB[H,E] = measure of belief (ukuran kepercayaan) terhadap hipotesis H, jika diberikan evidence E(antara 0 dan 1) MD [H,E] = measure of disbelief (ukuran ketidakpercayaan) terhadap hipotesis H, jika diberikan evidence E (antara 0 dan 1) CF[Rule] = MB[H,E] - MD[H,E]

P(H)=1 lainnya P(H)=0 P(H) = probabilitas kebenaran hipotesis H P(H|E) = probabilitas bahwa H benar karena fakta E

Contoh 1: Si Ani menderita bintik-bintik di wajahnya. Dokter memperkirakan Si Ani terkena cacar dengan ukuran kepercayaan, MB[Cacar, Bintik2] = 0.8 dan MD[Cacar, Bintik2] = 0.01 CF[Cacar, Bintik2] = 0.80 - 0.01 = 0.79

Contoh 2 Seandainya seorang pakar penyakit mata menyatakan bahwa probalitas seseorang berpenyakit edeme palbera inflamator adalah 0,02. Dari data lapangan menunjukkan bahwa dari 100 orang penderita penyakit edeme palbera inflamator , 40 orang memiliki gejala peradangan mata. Dengan menganggap H = edeme palbera inflamator , hitung faktor kepastian bahwa edeme palbera inflamator disebabkan oleh adanya peradangan mata.

P(edeme palbera inflamator ) = 0 P(edeme palbera inflamator ) = 0.02 P P(edeme palbera inflamator | peradangan mata) =40/100 = 0.4 MB(H|E) = max[0.4,0.02] – 0.02 1 – 0.02 = 0.4 -0.02 = 0.39 1-0.02 MD(H|E) = min [0.4 , 0.02] – 0.02 0 – 0,02 = 0.02 – 0.02 = 0 0 – 0.02 CF = 0.39 – 0 = 0.39 Rule : IF (Gejala = peradangan mata) THEN Penyakit = edeme palbera inflamator (CF = 0.39)

Wawancara seorang pakar Nilai CF (Rule) didapat dari interpretasi dari pakar yg diubah nilai CF tertentu. Pakar : Jika batuk dan panas, maka “hampir dipastikan” penyakitnya adalah influenza Rule : IF (batuk AND Panas) THEN penyakit = influenza (CF = 0.8) Uncertain Term CF Definitely not (pasti tidak) -1.0 Almost certainly not (hampir pasti tidak) -0.8 Probably not (kemungkinan besar tidak -0.6 Maybe not (mungkin tidak) -0.2 Unknow (tidak tahu) -0.2 sampai 0.2 Maybe (mungkin) 0.4 Probably(kemungkinan besar) 0.6 Almost certainly (hampir pasti) 0.8 Definitely (pasti) 1.0

Kombinasi beberapa Certainty Factors dalam Satu Rule Operator AND IF inflasi tinggi, CF = 50 %, (A), AND IF tingkat pengangguran kurang dari 7 %, CF = 70 %, (B), AND IF harga obligasi naik, CF = 100 %, (C) THEN harga saham naik CF[(A), (B), CF(C)] = Minimum [CF(A), CF(B), CF(C)] The CF for “harga saham naik” = 50 percent

Operator AND (lanjutan) Contoh 2 IF Saya punya uang lebih, CF = 0.7, (A), AND IF kondisi badan sehat, CF = 0.8, (B), AND IF tidak turun hujan, CF = 0.9, (C) THEN Saya akan pergi memancing CF untuk “Saya akan pergi memancing” = 0.7

Kombinasi beberapa Certainty Factors dalam Satu Rule (lanjutan) Operator OR Contoh 1 IF inflasi turun, CF = 70 %, (A), OR IF harga obligasi tinggi, CF = 85 %, (B) THEN harga saham akan tinggi Hanya 1(satu) IF untuk pernyataan ini dikatakan benar. Kesimpulan hanya 1(satu) CF dengan nilai maksimum CF (A or B) = Maximum [CF(A), CF(B)] The CF for “harga saham akan tinggi” = 85 percent

Kombinasi 2 (dua) atau lebih Rule Contoh : R1 : IF tingkat inflasi kurang dari 5 %, THEN harga saham di pasar naik(CF = 0.7) R2: IF tingkat pengangguran kurang dari 7 %, THEN harga saham di pasar naik (CF = 0.6) Efek kombinasi dihitung dengan menggunakan rumus : CF(R1,R2) = CF(R1) + CF(R2)[1 - CF(R1)]; or CF(R1,R2) = CF(R1) + CF(R2) - CF(R1)  CF(R2) Hitung kombinasi CF untuk dua rule di atas (0.88)

Jawab soal. CF(R1). =. 7. CF(R2). =. 6, CF(R1,R2) = 0. 7 + 0. 6(1 - 0 Jawab soal CF(R1) = 0.7 CF(R2) = 0.6, CF(R1,R2) = 0.7 + 0.6(1 - 0.7) = 0.7 + 0.6(0.3) = 0.88 Misalkan ada rule ke 3 yang merupakan rule baru, CF(R1,R2,R3) = CF(R1,R2) + CF(R3) [1 - CF(R1,R2)] R3 : IF harga obligasi meningkat, THEN harga saham naik(CF = 0.85) Hitung CF baru ? (0.982)

Referensi Sutojo, T., Mulyanto, E., Suhartono, V. (2011), “Kecerdasan Buatan”, Andi Yogyakarta Slide kuliah “Data Mining” Nurdin Bahtiar, S.Si, MT