STRUKTUR DATA Struktur Data Graf.

Slides:



Advertisements
Presentasi serupa
Teori Graf – Matematika Diskrit
Advertisements

GRAPH.
Matematika Diskrit Dr.-Ing. Erwin Sitompul
Struktur Diskrit Suryadi MT Teori Graph Kuliah_11 Teori Graph.
Jembatan Königsberg.
e7 4. INCEDENCE MATRIX Menggambarkan hubungan antara simpul dan busur.
MODUL KULIAH STRUKTUR DATA TANGGAL REVISI TANGGAL BERLAKU KODE DOKUMEN :::::: September Pertemuan Ke : 13 / Page BAB IX GRAPH Dinyatakan.
Pertemuan 8 STRUKTUR POHON (TREE).
TEORI GRAF.
Tugas #3 File soal UTS sudah dikirim ke alamat masing-masing.
BAB 5 TREE (Pohon) 179.
GRAPH Kata Graph di dalam Matematika mempunyai bermacam- macam arti. Biasanya di kenal kata Graph atau Grafik Fungsi, ataupun relasi. Untuk itu kali ini.
Linked List Pembuatan Simpul Awal.
Pertemuan 13 GRAPH IMAM SIBRO MALISI NIM :
TEORI GRAF Oleh : Yohana N, S.Kom.
Pertemuan 9 STRUKTUR POHON (TREE) IMAM SIBRO MALISI NIM :
GRAF TIDAK BERARAH PART 2 Dosen : Ahmad Apandi, ST
Pengenalan Graph Disusun Oleh: Budi Arifitama Pertemuan 9.
Algoritma Kruskal Teori Graph.
Graf Isomorfik (Isomorphic graph)
TEORI GRAF.
BAB 8 GRAF.
G R A P H Graph adalah Himpunan V (Vertex) yang elemennya disebut simpul (atau point atau node atau titik) Himpunan E (Edge) yang merupakan pasangan tak.
GRAPH.
13. Graf berbobot (Weighted graph)
GRAPH STRUKTUR DATA Disusun Oleh :
Dasar-Dasar Teori Graf
Struktur Data Graph.
13. Graf berbobot (Weighted graph)
MATRIKS PENYAJIAN GRAPH
Pewarnaan Graf.
*copyleft*1 Ade Ariyani A Agung Taufiqurrahman Annas Firdausi Hario Adit W Kartika Anindya P Kelompok XII Implementation of Dijkstra’s Shortest Path Algorithm.
BAB 8 GRAF.
Pendahuluan Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut Representasi : Objek : noktah, bulatan.
Lecture 12 Graph Representation Sandy Ardianto & Erick Pranata © Sekolah Tinggi Teknik Surabaya 1.
Rahmady Liyantanto liyantanto.wordpress.com
BAB VIII G R A F.
Teknik Informatika - Universitas Muhammadiyah Malang (UMM)
Algoritma dan Struktur Data
Matakuliah : T0034 / Perancangan & Analisis Algoritma
Graph Based Construction Methods ( GBCM )
GRAF.
TEORI GRAPH by Andi Dharmawan.
MATRIKS PENYAJIAN GRAPH
Graf Berlabel Graf Euler Graf Hamilton
BAB 5 TREE (Pohon) 179.
Representasi Graf Isomorfisme
BAB 7: Graf.
BAB 9: Pewarnaan Graf Matematika Diskrit DU1023 Heru Nugroho, S.Si
Tim Struktur Data Program Studi Teknik Informatika UNIKOM
Matakuliah : T0534/Struktur Data Tahun : 2005 Versi : September 2005
Fakultas Ilmu Komputer Universitas Lancang Kuning
Pertemuan 8 Review Berbagai Struktur Data Lanjutan …..
Tim Struktur Data Program Studi Teknik Informatika UNIKOM
Tree.
STRUKTUR DATA Struktur Data Graf.
STRUKTUR DATA (9) Struktur Data Graf.
Trees Directed Graph Algoritma Dijkstra
Linked List 6.3 & 7.3 NESTED LOOP.
Data Structure Graph Representation © Sekolah Tinggi Teknik Surabaya.
Tim Struktur Data Program Studi Teknik Informatika UNIKOM
GRAPH Graph didefinisikan sebagai pasangan himpunan titik-titik simpul (V) dan himpunan garis atau busur (E) dinyatakan dalam bentuk G=(V,E) dimana V tidak.
TEORI GRAF Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Representasi visual dari graf adalah dengan.
Tree.
Graf By Serdiwansyah N. A..
Keterkaitan Kegiatan Produksi – 2
Pertemuan – 13 GRAF.
TEORI GRAF Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Representasi visual dari graf adalah dengan.
Matematika Diskret Teori Graph Heru Cahya Rustamaji, M.T.
Graf dan Analisa Algoritma
Transcript presentasi:

STRUKTUR DATA Struktur Data Graf

GRAPH Graph adalah kumpulan dari simpul dan busur yang secara matematis dinyatakan sebagai : G = (V, E) Dimana G = Graph V = Simpul atau Vertex, atau Node, atau Titik E = Busur atau Edge, atau arc

Contoh graph : vertex V terdiri dari v1, v2, …, v5 B V terdiri dari v1, v2, …, v5 E terdiri dari e1, e2, … , e7 e1 e4 e3 v1 A C edge v3 e2 e5 e7 D E v4 e6 v5 Undirected graph

Sebuah graph mungkin hanya terdiri dari satu simpul Sebuah graph belum tentu semua simpulnya terhubung dengan busur Sebuah graph mungkin mempunyai simpul yang tak terhubung dengan simpul yang lain Sebuah graph mungkin semua simpulnya saling berhubungan

Graph Berarah dan Graph Tak Berarah : v2 v2 B B e9 e8 e3 e1 e3 e1 e4 e4 v3 v1 A C A C v1 v3 e10 e2 e2 e5 e7 e5 e7 D E D E e6 v5 v4 e6 v5 v4 Directed graph Undirected graph Dapat dilihat dari bentuk busur yang artinya urutan penyebutan pasangan 2 simpul.

Graph tak berarah (undirected graph atau non-directed graph) : Urutan simpul dalam sebuah busur tidak dipentingkan. Mis busur e1 dapat disebut busur AB atau BA Graph berarah (directed graph) : Urutan simpul mempunyai arti. Mis busur AB adalah e1 sedangkan busur BA adalah e8.

Graph Berbobot (Weighted Graph) Jika setiap busur mempunyai nilai yang menyatakan hubungan antara 2 buah simpul, maka busur tersebut dinyatakan memiliki bobot. Bobot sebuah busur dapat menyatakan panjang sebuah jalan dari 2 buah titik, jumlah rata-rata kendaraan perhari yang melalui sebuah jalan, dll.

Graph Berbobot : Directed graph Undirected graph B B A C A C D E D E v2 v2 B B 7 4 3 5 3 5 12 v3 v1 12 A C A C v1 v3 10 4 e2 6 8 6 8 D E D E 3 v5 v4 3 v5 v4 Directed graph Undirected graph Panjang busur (atau bobot) mungkin tidak digambarkan secara panjang yang proposional dengan bobotnya. Misal bobot 5 digambarkan lebih panjang dari 7.

Istilah pada graph Incident Jika e merupakan busur dengan simpul-simpulnya adalah v dan w yang ditulis e=(v,w), maka v dan w disebut “terletak” pada e, dan e disebut incident dengan v dan w. Degree (derajat), indegree dan outdegree Degree sebuah simpul adalah jumlah busur yang incident dengan simpul tersebut.

Indegree sebuah simpul pada graph berarah adalah jumlah busur yang kepalanya incident dengan simpul tersebut, atau jumlah busur yang “masuk” atau menuju simpul tersebut. Outdegree sebuah simpul pada graph berarah adalah jumlah busur yang ekornya incident dengan simpul tersebut, atau jumlah busur yang “keluar” atau berasal dari simpul tersebut.

Adjacent Pada graph tidah berarah, 2 buah simpul disebut adjacent bila ada busur yang menghubungkan kedua simpul tersebut. Simpul v dan w disebut adjacent. Pada graph berarah, simpul v disebut adjacent dengan simpul w bila ada busur dari w ke v. w e v v e w

Successor dan Predecessor Pada graph berarah, bila simpul v adjacent dengan simpul w, maka simpul v adalah successor simpul w, dan simpul w adalah predecessor dari simpul v. Path Sebuah path adalah serangkaian simpul-simpul yang berbeda, yang adjacent secara berturut-turut dari simpul satu ke simpul berikutnya. 1 1 1 2 1 2 2 2 4 4 4 4 3 3 3 3

Representasi Graph dalam bentuk matrix Adjacency Matrix Graph tak berarah A B C D E Urut abjad 1 2 3 4 B A 1 B 1 A C C 2 D 3 D E E 4 Graph Degree simpul : 3

Representasi Graph dalam bentuk matrix Adjacency Matrix Graph berarah A B C D E ke 1 2 3 4 B dari A 1 B 1 out A C C 2 D 3 D E E 4 Graph in

Representasi Graph dalam bentuk Linked List Adjency List graph tak berarah Digambarkan sebagai sebuah simpul yang memiliki 2 pointer. Simpul vertex : Simpul edge : left right left right info info Menunjuk ke simpul edge pertama Menunjuk ke simpul edge berikutnya, bila masih ada. Menunjuk ke simpul vertex berikutnya, dalam untaian simpul yang ada. Menunjuk ke simpul vertex tujuan yang berhubungan dengan simpul vertex asal.

Define struct untuk sebuah simpul yang dapat digunakan sebagai vertex maupun edge. typedef struct tipeS { tipeS *Left; int INFO; tipeS *Right; }; tipeS *FIRST, *PVertex, *PEdge;

Contoh : untuk vertex A, memiliki 2 edge yang terhubung yaitu e1 dan e2. Urut abjad e1 A e1 e2 e3 e4 A C B e2 e5 e7 C D E e6 D Graph E

Gambar di atas dapat disusun dengan lebih sederhana, sbb : C E C B D E A C D A C E E B C D D E Graph

Adjency List graph berarah

Graph berarah dan berbobot C D E 1 2 3 4 B 6 5 2 6 3 9 12 7 14 A 3 5 B 1 A 14 C C 2 12 2 12 D 3 D E E 4 7 Perhatikan pemilihan nilai 0.

Penyelesaian kasus Graph halaman sebelumnya : Define simpul untuk vertex dan edge Mengidentifikasi Simpul pertama sebagai vertex yang pertama Tambahkan vertex sisanya Tambahkan edge pada masing-masing vertex yang telah terbentuk Tampilkan representasi graph berikut bobotnya

Hasil :