KUSWANTO, 2012. SUB POKOK BAHASAN Mata kuliah dan SKS Manfaat Deskripsi Tujuan instruksional umum Pokok bahasan.

Slides:



Advertisements
Presentasi serupa
Perancangan Percobaan
Advertisements

PERSAMAAN DAN PERTIDAKSAMAAN
Perancangan Percobaan
Bahan Kuliah Statistika Terapan
ANALISIS REGRESI (REGRESSION ANALYSIS)
Perancangan Percobaan
Function.
Kesetaraan Uji Koefisien Regresi dan Koefisien Korelasi
2. Introduction to Algorithm and Programming
Regresi linier sederhana
Regresi linier sederhana
Analisis Variansi (Analysis Of Variance / ANOVA) satu faktor
Common Effect Model.
Regresi linier sederhana
Validitas & Reliabilitas
Korelasi Linier KUSWANTO Korelasi Keeratan hubungan antara 2 variabel yang saling bebas Walaupun dilambangkan dengan X dan Y namun keduanya diasumsikan.
Analisis Data dengan SPSS
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
Zulharman. Tujuan Belajar 1. Mahasiswa mampu memahami berbagai metode membuat catatan kuliah (note taking) 2. Mahasiswa mampu memahami metode membaca.
1 Pertemuan 09 Kebutuhan Sistem Matakuliah: T0234 / Sistem Informasi Geografis Tahun: 2005 Versi: 01/revisi 1.
Pendugaan Parameter Proporsi dan Varians (Ragam) Pertemuan 14 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
ANALISIS EKSPLORASI DATA
1 Pertemuan 25 Matakuliah: I0044 / Analisis Eksplorasi Data Tahun: 2007 Versi: V1 / R1 Analisis Regresi Ganda (I) : Pendugaan Model Regresi.
Pertemuan 07 Peluang Beberapa Sebaran Khusus Peubah Acak Kontinu
Simple Regression ©. Null Hypothesis The analysis of business and economic processes makes extensive use of relationships between variables.
MULTIPLE REGRESSION ANALYSIS THE THREE VARIABLE MODEL: NOTATION AND ASSUMPTION 08/06/2015Ika Barokah S.
1 Pertemuan #2 Probability and Statistics Matakuliah: H0332/Simulasi dan Permodelan Tahun: 2005 Versi: 1/1.
1 Pertemuan 8 JARINGAN COMPETITIVE Matakuliah: H0434/Jaringan Syaraf Tiruan Tahun: 2005 Versi: 1.
REGRESI LINIER SEDERHANA (SIMPLE LINEAR REGRESSION)
1 Pertemuan 24 Matakuliah: I0214 / Statistika Multivariat Tahun: 2005 Versi: V1 / R1 Analisis Struktur Peubah Ganda (IV): Analisis Kanonik.
4- Classification: Logistic Regression 9 September 2015 Intro to Logistic Regression.
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
Suharmadi Sanjaya - Matematika ITS. BACKGROUND A Good course has a clear purpose: Applied Mathematics is alive and very vigorous Teaching of Apllied Mathematics.
Grafika Komputer dan Visualisasi Disusun oleh : Silvester Dian Handy Permana, S.T., M.T.I. Fakultas Telematika, Universitas Trilogi Pertemuan 15 : Kurva.
VEKTOR VEKTOR PADA BIDANG.
Cartesian coordinates in two dimensions
Cartesian coordinates in two dimensions
MENENTUKAN GARIS LURUS TERBAIK
Pengujian Hipotesis (I) Pertemuan 11
Matakuliah : I0014 / Biostatistika Tahun : 2005 Versi : V1 / R1
Regresi.
BY EKA ANDRIANI NOVALIA RIZKANISA VELA DESTINA
Parabola Parabola.
Portofolio Campuran.
VECTOR VECTOR IN PLANE.
PENDUGAAN PARAMETER Pertemuan 8
Ekonomi Manajerial dalam Perekonomian Global
BILANGAN REAL BILANGAN BERPANGKAT.
Two-and Three-Dimentional Motion (Kinematic)
Pendugaan Parameter (II) Pertemuan 10
FACTORING ALGEBRAIC EXPRESSIONS
ANALISA REGRESI LINEAR DAN BERGANDA
Pertemuan Kesembilan Analisa Data
Regresi Ganda Pertemuan 21
PERSAMAAN DIFERENSIAL (DIFFERENTIAL EQUATION)
Pertemuan Kesepuluh Data Analysis
REGRESI LINIER SEDERHANA (SIMPLE LINEAR REGRESSION)
ANALISIS MULTIVARIATE
Bab 4 : Estimasi Permintaan
Analisis Korelasi dan Regresi Berganda Manajemen Informasi Kesehatan
Matematika PERSAMAAN KUADRAT Quadratic Equations Quadratic Equations
Pertemuan 21 dan 22 Analisis Regresi dan Korelasi Sederhana
A SMALL TRUTH TO MAKE LIFE 100%. Hard Work H+A+R+D+W+O+R+K = 98% Knowledge K+N+O+W+L+E+D+G+E = 96%
Suhandi Wiratama. Before I begin this presentation, I want to thank Mr. Abe first. He taught me many things about CorelDRAW. He also guided me when I.
Kuswanto, 2007 STATISTIKA TERAPAN.
REGRESI LINIER SEDERHANA (SIMPLE LINEAR REGRESSION)
Al Muizzuddin F Matematika Ekonomi Lanjutan 2013
Rank Your Ideas The next step is to rank and compare your three high- potential ideas. Rank each one on the three qualities of feasibility, persuasion,
Vector. A VECTOR can describe anything that has both MAGNITUDE and DIRECTION The MAGNITUDE describes the size of the vector. The DIRECTION tells you where.
Draw a picture that shows where the knife, fork, spoon, and napkin are placed in a table setting.
Transcript presentasi:

KUSWANTO, 2012

SUB POKOK BAHASAN Mata kuliah dan SKS Manfaat Deskripsi Tujuan instruksional umum Pokok bahasan

MANFAAT MATA KULIAH Mata kuliah Perancangan Percobaan II memberikan pengetahuan tentang analisis regresi dan korelasi, sehingga bermanfaat untuk : Mata kuliah Perancangan Percobaan II memberikan pengetahuan tentang analisis regresi dan korelasi, sehingga bermanfaat untuk : Mengetahui bentuk hubungan antar dua atu lebih variabel Mengetahui bentuk hubungan antar dua atu lebih variabel Mengetahui keeratan hubungan antar dua atau lebih variabel Mengetahui keeratan hubungan antar dua atau lebih variabel

Deskripsi Singkat Kuliah diselekggarakan dalam 14 kali pertemuan (Diskusi, problem solving), tugas terstruktur dan 2 kali ujian selama satu semester. Kuliah diselekggarakan dalam 14 kali pertemuan (Diskusi, problem solving), tugas terstruktur dan 2 kali ujian selama satu semester. Selama tatap muka diberikan wawasan tentang dasar regresi dan korelasi Selama tatap muka diberikan wawasan tentang dasar regresi dan korelasi Korelasi meliputi korelasi sederhana, korelasi genetik dan pengujiannya Korelasi meliputi korelasi sederhana, korelasi genetik dan pengujiannya Regresi meliputi regresi linier sederhana, linier berganda dan non linier Regresi meliputi regresi linier sederhana, linier berganda dan non linier Pada setiap materi diberikan latihan soal Pada setiap materi diberikan latihan soal Selain tatap muka, juga diberikan praktikum dari beberapa materi pokok. Selain tatap muka, juga diberikan praktikum dari beberapa materi pokok.

Tujuan Instruksional Umum Pada akhir penyajian mata kuliah ini mahasiswa akan dapat menguasai dengan benar pengertian dasar analisis korelasi dan regresi, serta dapat mengembangkan untuk analisis hasil-hasil penelitian Pada akhir penyajian mata kuliah ini mahasiswa akan dapat menguasai dengan benar pengertian dasar analisis korelasi dan regresi, serta dapat mengembangkan untuk analisis hasil-hasil penelitian

Pokok Bahasan 1. Model linier 2. Korelasi linier sederhana 3. Regresi linier sederhana 4. Regresi linier berganda 5. Regresi kuadrat, pangkat tiga, tingkat tinggi 6. Regresi logaritma, hiperbola dll 7. Hubungan rancangan percobaan dengan regresi 8. Pendugaan regresi dengan ortogonal polinomial 9. Pendugaan model regresi terbaik 10. Korelasi genetik 11. Analisis lintas

MODEL LINIER Kuswanto, 2012

Model Linier Model Linier (General Linier Model) merupakan analisis statistik yang paling banyak digunakan dalam penelitian terapan dan sosial It is the foundation for the t-test, Analysis of Variance (ANOVA), Analysis of Covariance (ANCOVA), regression analysis, and many of the multivariate methods including factor analysis, cluster analysis, multidimensional scaling, discriminant function analysis, canonical correlation, and others. t-testAnalysis of Covariance (ANCOVA)regression analysist-testAnalysis of Covariance (ANCOVA)regression analysis

Model Linier 2 Variabel Cara yang paling mudah untuk menggambarkan model linier adalah dengan contoh dua variabel Figure 1 shows a bivariate plot of two variables, as a fertilizer (on the x-axis) and a yield of yardlong bean (on the y-axis). Each dot on the plot represents the fertilizer and yield score for an individual. The pattern clearly shows a positive relationship because, in general, plant with higher fertilizer also have higher yield, and vice versa Figure 1. Bivariate plot

Summarize Data The goal in our data analysis is to summarize or describe accurately what is happening in the data. Dari data pada plot bivariat, bagaimana cara memperoleh “best summarize”? Figure 2 shows that a straight line through the "cloud" of data points would effectively describe the pattern in the bivariate plot. Figure 2. A straight-line summary of the data

Although the line does not perfectly describe any specific point (because no point falls precisely on the line), it does accurately describe the pattern in the data. When we fit a line to data, we are using what we call a linear model. The term "linear" refers to the fact that we are fitting a line. The term model refers to the equation that summarizes the line that we fit. A line like the one shown in Figure 3 is often referred to as a regression line and the analysis that produces it is often called regression analysis Figure 3. A straight-line summary of the data Summarize Data

Equation for a straight line Figure 4 shows the equation for a straight line. You may remember this equation from your high school algebra classes where it is often stated in the form –y = b0 + b1X In this equation, the components are: –y = the y-axis variable, the outcome or yield of pod x = the x-axis variable, the fertilizer b0 = the intercept (value of y when x=0) b1 = the slope of the line Figure 4. The straight-line model FertilizerYield

About the slope (kemiringan)… The slope of the line is the change in the yield given in fertilizer units. As mentioned above, this equation does not perfectly fit the cloud of points in Figure 1. If it did, every point would fall on the line. We need one more component to describe the way this line is fit to the bivariate plot.

Equation Figure 5 shows the equation for the two variable or bivariate linear model. The component that we have added to the equation in Figure 5 is an error term, e, that describes the vertical distance from the straight line to each point. This term is called "error" because it is the degree to which the line is in error in describing each point. Figure 5. The two-variable linear model

From the equation …. When we fit the two-variable linear model to our data, we have an x and y score for each plant in our study. We input these value pairs into a computer program. The program estimates the b0 and b1 values for us as indicated in Figure 6. We will actually get two numbers back that are estimates of those two values. Y = bo + b1X + e

Solve intercept and regression coefficient Figure 6. What the model estimates

Dari garis regresi Garis regresi 2 variabel tsb, secara sederhana menggambarkan hubungan antara 2 variabel, sebagai rata-rata yang menggambarkan tendensi sentral dari variabel tunggal And, just as the mean does not accurately represent every value in a distribution, the regression line does not accurately represent every value in the bivariate distribution. Namun, data tsb menunjukkan sebuah pola dan kita dapat menggambarkannya secara ringkas dengan persamaan dan garis Y = bo + b1X + e