RANGKAIAN LOGIKA KOMBINASIONAL

Slides:



Advertisements
Presentasi serupa
Pertemuan 12 : Level Logika Digital
Advertisements

Arsitektur Komputer “Rangkaian Aritmatika”
Operasi Aritmatika.

Jurusan Teknik Elektro Fakultas Teknik UNTIRTA
Logic and Computer Design Fundamental
IX. RANGKAIAN LOGIKA KOMBINASIONAL
Digital Logic Symbols For Logic gates
Digital logic circuit Arum Tri Iswari Purwanti
Pertemuan 12 : Level Logika Digital
Sistem – Sistem Bilangan, Operasi dan kode
MATA KULIAH TEKNIK DIGITAL DISUSUN OLEH : RIKA SUSANTI, ST
BAB 9 RANGKAIAN ARITMATIKA.
K-Map Using different rules and properties in Boolean algebra can simplify Boolean equations May involve many of rules / properties during simplification.
RANGKAIAN LOGIKA KOMBINASIONAL
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
PERTEMUAN MINGGU KE-2 LEVEL GATE.
Pertemuan 12 Arithmetic Network di VLSI
“HALF ADDER DAN FULL ADDER”
X. RANGKAIAN LOGIKA KOMBINASIONAL
Floating Point (Multiplication)
ARITHMATIC LOGICAL UNIT (ALU)
Rangkaian Kombinasional Dasar
Organisasi dan Arsitektur Komputer
CSE477 L07 Pass Transistor Logic.1Irwin&Vijay, PSU, 2002 VLSI Digital Circuits Pass Transistor Logic Referensi : Mary Jane Irwin (
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
SISTEM DIGITAL Enkoder dan Dekoder.
Riri irawati, m.Kom Logika matematika 3 sks
Aljabar Boolean IF2120 Matematika Diskrit Oleh: Rinaldi Munir
Jartel, Sukiswo Sukiswo
07/11/2017 BARISAN DAN DERET KONSEP BARISAN DAN DERET 1.
RANGKAIAN FLIP FLOP.
PENGANTAR TEKNOLOGI KOMPUTER & INFORMASI – A
Mata Kuliah Dasar Teknik Digital TKE 113
XXII. MEMORY DAN PROGRAMMABLE LOGIC
PERTEMUAN 3 GERBANG LOGIKA
PERTEMUAN 9 RANGKAIAN KOMBINASIONAL
ARITHMATIC LOGICAL UNIT (ALU)
MATA KULIAH TEKNIK DIGITAL DISUSUN OLEH : RIKA SUSANTI, ST
Aplikasi Decoder Encoder Multiflextor Demultiflextor Half & Full Adder
MATA KULIAH TEKNIK DIGITAL DISUSUN OLEH : RIKA SUSANTI, ST
CPU ARITHMATIC.
VECTOR VECTOR IN PLANE.
Transfer Register dan Mikrooperasi
Aritmatika digital.
Arsitektur Komputer II
SIRKUIT ARITMATIKA.
Oleh : SHOFFIN NAHWA UTAMA, M.T
BILANGAN REAL BILANGAN BERPANGKAT.
REAL NUMBERS EKSPONENT NUMBERS.
Pembanding (Comparator)
Micro-programmed Control (Kontrol Termikroprogram)
I. SISTEM BILANGAN BINER
RANGKAIAN FLIP FLOP.
ARITHMATIC LOGICAL UNIT (ALU)
Organisasi Sistem Komputer
Organisasi Komputer II
MATA KULIAH TEKNIK DIGITAL DISUSUN OLEH : RIKA SUSANTI, ST., M.ENG
Aritmatika Digital Penjumlah Paro (Half Adder)
BINARY DECODING Engkonversi sebuah n-bit code biner kedalam sebuah sinyal diskrit/1 (satu) output yang aktif (low/high) Syarat perancangan sebuah Dekoder.
Mata Kuliah Teknik Digital
Fungsi-fungsi IC Digital: Kombinasi
Organisasi Komputer II
Perancangan rangkaian logika:
RANGKAIAN DIGITAL ENCODER & Decoder.
RANGKAIAN FLIP FLOP.
Rangkaian Kombinasional
MATAKULIAH SISTEM DIGITAL PERTEMUAN V RANGKAIAN ARITMATIK
MSI = Medium Scale Integration
SISTEM KOMPUTER ARITHMATIC LOGICAL UNIT (ALU) ARITHMATIC LOGIC UNIT 1. ARITHMATIC LOGIC YANG MENCAKUP : Adder (Penambahan) Subtracter (Pengurangan)
Transcript presentasi:

RANGKAIAN LOGIKA KOMBINASIONAL Pertemuan 8 & 9 Dosen : I Made Astawa

RANGKAIAN LOGIKA KOMBINASIONAL PENDAHULUAN Suatu rangkaian diklasifikasikan sebagai kombinasional jika memiliki sifat yaitu keluarannya ditentukan hanya oleh masukkan eksternal saja. Suatu rangkaian diklasifikasikan sequential jika ia memiliki sifat keluarannya ditentukan tidak hanya oleh masukkan eksternal tetapi juga oleh kondisi sebelumnya.

PROSEDUR PERANCANGAN a. Pokok permasalahan sudah ditentukan yaitu jumlah input yang dibutuhkan serta jumlah output yang tertentu. b. Susun kedalam tabel kebenaran (Truth Table). Kondisi don’t care dapat diikut sertakan apabila tidak mempengaruhi output. Sederhanakan fungsi output dengan K-Map atau Metode Tabulasi Gambar Rangkain logikanya

DECODER Decoder n to 2n Decoder adalah rangkaian kombinasi yang akan memilih salah satu keluaran sesuai dengan konfigurasi input. Decoder memiliki n input dan 2n output. Blok Diagram Decoder. Decoder n to 2n IO I1 In YO Y1 Y(2n-1)

DECODER Untuk Decoder 2 to 4 IO Decoder n to 2n YO Y1 Y2 I1 Y3

DECODER IO I1 YO Y1 Y2 Y3 O O O 1 1 O 1 1 1 O O O O 1 O O O O 1 O Tabel Kebenaran Untuk Decoder 2 to 4 IO I1 YO Y1 Y2 Y3 O O O 1 1 O 1 1 1 O O O O 1 O O O O 1 O O O O 1

DECODER 2 To 4 I1 I0 Y0 Y1 Y2 Y3

Decoder Examples 1-to-2-Line Decoder 2-to-4-Line Decoder Note that the 2-4-line made up of 2 1-to-2- line decoders and 4 AND gates. A A A D D D D 1 1 2 3 A 1 1 D A A 1 1 1 1 1 1 1 1 D A A 1 1 (a) D A A 2 1 D A A 3 1 (b)

Decoder Expansion - Example 1

Decoder with Enable In general, attach m-enabling circuits to the outputs See truth table below for function Note use of X’s to denote both 0 and 1 Combination containing two X’s represent four binary combinations Alternatively, can be viewed as distributing value of signal EN to 1 of 4 outputs In this case, called a demultiplexer

HALF ADDER ( HA ) HA Tabel kebenaran Simbol Half Adder Dimana : A B I N P U T O U T P U T A B S (Sum) C (Carry) 1 Dimana : A B C S A S HA + B C

HALF ADDER ( HA ) B’ B A’ 1 A 1 B’ B A’ A 1 Persamaan output Untuk Sum S = AB’ + A’B = A  B Untuk Carry C = AB B’ B A’ 1 A 1 B’ B A’ A 1

Beberapa macam implementasi dari Half Adder: S = (x + y)(x’ + y’) C = x y S = (C + x’ y’)’ C = x y Rangkaian Logika nya Lihat di Papan Tulis ! S = (x + y)(x’ + y’) C = (x’ + y’)’

Implementations: Half-Adder The most common half adder implementation is: A NAND only implementation is: X Y C S Y X C S × = Å X Y C S ) ( C Y X S × = +

Full-Adder A full adder is similar to a half adder, but includes a carry-in bit from lower stages. Like the half-adder, it computes a sum bit, S and a carry bit, C. For a carry-in (Z) of 0, it is the same as the half-adder: For a carry- in (Z) of 1: Z X 1 + Y + 0 + 1 C S 0 1 1 0 Z 1 X + Y + 0 + 1 C S 0 1 1 0

Full-Adder Simbol Full Adder F A A B Cin S Co Co S +

Logic Optimization: Full-Adder X Y Z C S 1 Full-Adder Truth Table: Full-Adder K-Map: S Y C Y 1 1 1 1 3 2 1 3 2 X 1 1 X 1 1 1 4 5 7 6 4 5 7 6 Z Z

Equations: Full-Adder From the K-Map, we get: The S function is the three-bit XOR function (Odd Function): The Carry bit C is 1 if both X and Y are 1 (the sum is 2), or if the sum is 1 and a carry-in (Z) occurs. Thus C can be re-written as: The term X·Y is carry generate. The term XY is carry propagate. Z Y X C S + = Z Y X S Å = Z ) Y X ( C Å + =

Full Adder Ai Bi Ci Ci+1 Gi Pi Si Full Adder Schematic Here X, Y, and Z, and C (from the previous pages) are A, B, Ci and Co, respectively. Also, G = generate and P = propagate. Note: This is really a combination of a 3-bit odd function (for S)) and Carry logic (for Co): (G = Generate) OR (P =Propagate AND Ci = Carry In) Co = G + P · Ci Ai Bi Ci Ci+1 Gi Pi Si

Full Adder dgn 2 buah HA Atau HA Cin A B S Co

FULL ADDER DGN DECODER Contoh. Implementasikan suatu Full Adder dengan memakai Decoder dan 2 gerbang OR Jawab : Sum = A  B  Cin = Σ 1,2,4,7 Carry out = (A  B) Cin + AB = Σ 3,5,6,7

FULL ADDER DGN DECODER Gambar Rangkaian Logika Cin Decoder A 3 to 8 B Y0 Cin Y1 Sum Y2 Y3 Decoder 3 to 8 A Y4 Y5 B Y6 Carry out Y7

4-bit Ripple-Carry Binary Adder A four-bit Ripple Carry Adder made from four 1-bit Full Adders:

2’s Complement Adder/Subtractor Subtraction can be done by addition of the 2's Complement. 1. Complement each bit (1's Complement.) 2. Add 1 to the result. The circuit shown computes A + B and A – B: For S = 1, subtract, the 2’s complement of B is formed by using XORs to form the 1’s comp and adding the 1 applied to C0. For S = 0, add, B is passed through unchanged

Code Conversion Konversi 8421BCD ke Excess-3

A B C D W X Y Z

LATIHAN MERANCANG DECODER Rancang 8421BCD to seven segment ? Catatan : Seven Segment. a f b g e c d