FISIKA FLUIDA yusronsugiarto.lecture.ub.ac.id

Slides:



Advertisements
Presentasi serupa
Staf Pengajar Fisika Departemen Fisika FMIPA Universitas Indonesia
Advertisements

DINAMIKA FLUIDA FISIKA SMK N 2 KOTA JAMBI.
FLUIDA BERGERAK ALIRAN FLUIDA.
Mekanika Fluida II Jurusan Teknik Mesin FT. UNIMUS Julian Alfijar, ST
FLUIDA DINAMIS j.
Berkelas.
FLUIDA.
ALIRAN VISKOS VISKOSITAS DINAMIK
Bab 1: Fluida Massa Jenis Tekanan pada Fluida
Matakuliah : K0614 / FISIKA Tahun : 2006
8. FISIKA FLUIDA Materi Kuliah: Tegangan Permukaan Fluida Mengalir
FLUIDA DINAMIK.
RIZKI ARRAHMAN KELAS C. ALIRAN FLUIDA DALAM PIPA  Sistem perpipaan adalah suatu sistem yang banyak digunakan untuk memindahkan fluida, baik.
Mekanika Fluida – Fani Yayuk Supomo, ST., MT
Kuliah MEKANIKA FLUIDA
Selamat Belajar… Bersama Media Inovasi Mandiri Semoga Sukses !!
Dinamika Fluida Disusun oleh : Gading Pratomo ( )
Fluida TIM FISIKA UHAMKA 2012
MEKANIKA FLUIDA Farid Suleman
Mekanika Fluida Jurusan Teknik Sipil Pertemuan: 4.
Hidrostatika Hidrostatika adalah ilmu yang mempelajari fluida yang tidak bergerak. Fluida ialah zat yang dapat mengalir. Seperti zat cair dan gas. Tekanan.
Nikmah MAN Model Palangka Raya
Present by : kelompok 5 1. Asthervina W.P. ( ) 2. Djeriruli.S ( ) 3. Yusuf.A ( ) 4. Syaiful Rizal.E ( ) 5. Rahadita.
FLUIDA DINAMIS Oleh: STAVINI BELIA
Mempelajari gerak partikel zat cair pada setiap titik medan aliran di setiap saat, tanpa meninjau gaya yang menyebabkan gerak aliran di setiap saat, tanpa.
VISKOSITAS.
Ir. Mochamad Dady Ma‘mun M.Eng, Phd
HIDRODINAMIKA.
Konsep Aliran Zat Cair Melalui (Dalam) Pipa
DINAMIKA FLUIDA.
Ir. Mochamad Dady Ma‘mun M.Eng, Phd
ALIRAN INVISCID DAN INCOMPRESSIBLE, PERSAMAAN MOMENTUM, PERSAMAAN EULER DAN PERSAMAAN BERNOULLI Dosen: Novi Indah Riani, S.Pd., MT.
AERODINAMIKA ASWAN TAJUDDIN, ST.
BAB FLUIDA.
MEKANIKA ZAT PADAT DAN FLUIDA
Fluida Cair Fluida atau zat alir Zat cair zat cair Zat gas air darah,
Hidrodinamika, Dinamika Fluida, Hk Kontinuitas,Hk Poiseuille
DINAMIKA FLUIDA.
FLUIDA DINAMIS.
Kuliah Mekanika Fluida
m  v  kg m3 P F A  Newton meter 2  
Ir. Mochamad Dady Ma‘mun M.Eng, Phd
DINAMIKA FLUIDA FISIKA SMK PERGURUAN CIKINI.
BAB. 13 Fluida Dinamik 4/29/2018.
MEKANIKA ZALIR (FLUIDA)
Kuliah Mekanika Fluida
STATIKA FLUIDA Suatu padatan adalah bahan tegar yang mempertahankan bentuknya terhadap pengaruh gaya-gaya luar Fluida (zat alir) adalah bahan tak tegar.
Fakultas Teknologi Pertanian Universitas Brawijaya
Kuliah MEKANIKA FLUIDA
MODUL 2: ALIRAN BAHAN CAIR Dr. A. Ridwan M.,ST.,M.Si,M.Sc.
MEKANIKA ZALIR (FLUIDA)
FLUIDA DINAMIS j.
Hidrodinamika, Dinamika Fluida, Hk Kontinuitas,Hk Poiseuille
DINAMIKA FLUIDA.
Hidrodinamika, Dinamika Fluida, Hk Kontinuitas,Hk Poiseuille
MEKANIKA FLUIDA Bagian II (HIDRODINAMIKA)
PERTEMUAN 1.
BAHAN AJAR FISIKA FLUIDA DINAMIS
PENGANTAR TEKNOLOGI INFORMASI
Standar Kompetensi Menerapkan konsep dan prinsip mekanika klasik sistem kontinu dalam menyelesaikan masalah Kompetensi Dasar Menganalisis hukum-hukum.
Fluida adalah zat yang dapat mengalir Contoh : udara, air,minyak dll
PRINSIP-PRINSIP PERPINDAHAN PANAS KONVEKSI BAB 4.
Zat Padat dan Fluida Tim TPB Fisika.
MEKANIKA FLUIDA Bagian II (HIDRODINAMIKA)
FLUIDA.
MEKANIKA FLUIDA Bagian II (HIDRODINAMIKA)
Menik Dwi Kurniatie, S.Si., M.Biotech. Universitas Dian Nuswantoro
FLUIDA. PENDAHULUAN Berdasarkan wujudnya materi di bedakan menjadi 3 : padat, cair dan gas. Benda padat : memiliki sifat mempertahankan bentuk dan ukuran.
Alfandy Maulana Yulizar Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas.
1. Aliran bersifat steady/tunak(tetap) FLUIDA FLUIDA IDEAL FLUIDA SEJATI 2. Nonviscous (tidak kental) 2. Viscous (kental) 1. alirannya turbulen 3. Incompresibel.
Transcript presentasi:

FISIKA FLUIDA yusronsugiarto.lecture.ub.ac.id 0852-3589-0508 Faruq kelas p = 085607979092 Fenta kelas c = 085851264612 Jandel kelas M = 085710005296 Habib kelas K = 087759622378 FISIKA FLUIDA YUSRON SUGIARTO, STP, MP, MSc yusronsugiarto.lecture.ub.ac.id 0852-3589-0508

Fluida Mengalir Kontinuitas Persamaan Bernouli Viskositas

Fluida Mengalir Statik: rapat massa & tekanan Fluida dinamik/ bergerak kecepatan alir Fluida dinamik/ bergerak Beberapa anggapan (model) yang digunakan: Tak kompressibel (incompressible) Temperaturnya tidak bervariasi Alirannya tunak, sehingga kecepatan dan tekanan fluida tidak bergantung terhadap waktu Alirannya laminer Alirannya tidak berrotasi (irrotational) Tidak kental

SIFAT-SIFAT ALIRAN FLUIDA garis alir Gerak partikel mengikuti lintasan yang teratur (Satu sama lain tak pernah saling berpotongan) Laminer (Stabil) Laminer ~ V rendah Gerak partikel mengikuti lintasan yang tak teratur (Ada bagian yang berpusar) Turbulen (Tak Stabil) Turbulen ~ V tinggi

JENIS ALIRAN Aliran Laminer Setiap partikel bergerak dalam satu arah horisontal sehingga terjadi lapisan-lapisan fluida dengan kecepatan berbeda Distribusi kecepatan tidak merata dan kuadratis Bila pada aliran laminer disemprotkan cairan berwarna, maka cairan tadi akan bergerak horisontal searah dengan aliran Aliran laminer terjadi bila : Viskositas cairan tinggi Kecepatan aliran rendah Luas penampang pipa kecil

Aliran Turbulen Ada partikel-partikel yang bergerak ke arah lain sehingga tidak ada lagi lapisan-lapisan dengan kecepatan berbeda Bila pada aliran turbulen disemprotkan cairan berwarna, maka cairan tersebut selain bergerak searah aliran juga ada yang bergerak ke arah radial sehingga akan memenuhi seluruh penampang pipa Distribusi kecepatan lebih homogen Aliran turbulen terjadi bila : Viskositas cairan rendah Kecepatan aliran tinggi Luas penampang pipa besar

BILANGAN REYNOLD NR Tergantung pada rapat massa, viskositas, diameter dan kecepatan Merupakan bilangan tak berdimensi Menentukan jenis aliran Bila NR < 2000  aliran laminer Bila NR> 4000  aliran turbulen bila 2000 < NR< 4000  aliran transisi/daerah kritis (critical zone)

Dwiki (kelas P) 10 poin Roziq kelas c 5 poin Anik kelas c 5 poin Soal Bila sepanjang pipa berdiameter 150 mm mengalir gliserin pada 25 oC dengan kecepatan 3,6 m/s tentukan apakah jenis alirannya laminer atau turbulen

Soal Bila sepanjang pipa berdiameter 150 mm mengalir gliserin pada 25 oC dengan kecepatan 3,6 m/s tentukan apakah jenis alirannya laminer atau turbulen Jawab : Jenis aliran laminer

Soal Tentukan apakah aliran bersifat laminer atau turbulen bila air pada temperatur 70o C mengalir dalam K copper tube berdiameter 1 in dengan kecepatan sebesar 285 L/min.

Soal Tentukan apakah aliran bersifat laminer atau turbulen bila air pada temperatur 70o C mengalir dalam K copper tube berdiameter I in dengan kecepatan sebesar 285 L/min. Jawab :

Aliran turbulen

MENU HARI INI Fluida Mengalir Kontinuitas Persamaan Bernouli Viskositas

FLUIDA IDEAL Encer (Nonviscous) Aliran Stabil (Tidak turbulen) Derajat gesekan internal fluida Encer (Nonviscous) Aliran Stabil (Tidak turbulen) Tak termampatkan (Incompressible) Viskositas mendekati nol Kecepatan partikel pada suatu titik konstan Selama mengalir kerapatannya konstan v2 A1 A2 Dx2 v1 v P Dx1

FLUIDA IDEAL Muatan kekal : Persamaan kontinyuitas v2 A1 A2 Dx2 v1 v P Dx1 Persamaan kontinyuitas Muatan kekal : Apabila fluida tak termampatkan : Av = konstan Debit (Fluks)

KONTINUITAS V2 V1 A2 A1 A1 1 = A2  2 Q1 = Q2 SOAL: Sebuah pipa lurus memiliki dua macam penampang, masing-masing dengan luas penampang 200 mm2 dan 100 mm2. Pipa tersebut diletakkan secara horisontal, sedangkan air di dalamnya mengalir dari penampang besar ke penampang kecil. Jika kecepatan arus di penampang besar adalah 2 m/s, tentukanlah: a. kecepatan arus air di penampang kecil, dan b. volume air yang mengalir setiap menit.

Fluida Mengalir Kontinuitas Persamaan Bernouli Viskositas

Persamaan Bernoulli Kecepatan rendah  tekanan tinggi Kecepatan tinggi  tekanan rendah kenapa Selembar kain tipis ditiup dari bagian atasnya, ternyata kain tersebut naik ke atas?

Persamaan Bernoulli Terdiri dari : Energi tekanan Energi potensial dan energi kenetik energi karena gesekan (friction loss)

PERSAMAAN BERNOULLI Teorema Usaha - Energi : Persamaan Bernoulli Dx1 Dx2 v1 v2 Teorema Usaha - Energi : P2A2 y1 y2 P1A1 Persamaan Bernoulli Usaha total : Perubahan energi kinetik : Perubahan energi potensial :

P + ½v2 + gh = konstan Berdasar konsep kerja – energi P1 + ½v12 + gh1 =P2 + ½v22 + gh2

Soal Air mengalir sepanjang pipa horisontal, penampang tidak sama besar. Pada tempat dengan kecepatan air 35 cm/det tekanannya adalah 1 cmHg. Tentukanlah tekanan pada bagian pipa dimana kecepatan aliran airnya 65 cm/det.(g = 980 cm/det2) ! P1 = 1 cmHg = 13328 dyne/cm2 A1 A2 Oktavian kelas c 10poin Venta kelas c 1o poin

P1 = 1 cmHg = 13328 dyne/cm2 P1 = 13328 dyne/cm2 v1 = 35 cm/det; v2 = 65 cm/det Prinsip Bernoulli: P1 + pgy1 + 1/2rv12 = P2 + rgy2 + 1/2rv22 Karena y1 = y2 (pipa horisontal), maka: P1 - P2 = 1/2 r (V22 - V12) P1 - P2 = 1/2 1 (652-352) P1 - P2 = 1/2 3000 P1 - P2 = 1500 dyne/cm2 Jadi: P2 = P1 - 1500 P2 = 13328 - 1500 P2 = 11828 dyne/cm2 P2 = 0,87 cmHg

MENU HARI INI Fluida Mengalir Kontinuitas Persamaan Bernouli Viskositas

Aliran Viskos Kenapa aliran sungai terdapat perbedaan kecepatan aliran pada titik tengah dengan pinggir sungai ? Fluida ideal Adanya gaya gesek antara fluida dan dinding Fluida real

Viskositas L P1 P2 Viskositas / kekentalan dapat dibayangkan sebagai gesekan antara satu bagian dengan bagian yang lain dalam fluida.

Viskositas L P1 P2 F = gaya gesek antara dua lapisan zat cair yang mengalir = angka kekentalan = viskositas A= luas permukaan = kecepatan mengalir sepanjang L

Viskositas Debit alir ( volum per detik) P1 P2 = Viskousitas = 10-3 Pa (air) = 3 – 4 .10-3 Pa (darah) r = jari-jari pembuluh, L = Panjang P = Tekanan, V = Volume, t = Waktu

Viskositas = Viskousitas = 10-3 Pa (air) = 3 – 4 .10-3 Pa (darah) r = jari-jari, L = Panjang P = Tekanan, V = Volume, t = Waktu Debit aliran fluida dipengaruhi oleh tahanan yang tergantung pd: Panjang pembuluh Diameter pembuluh Viskous / kekentalan zat cair (pada darah normal kekentalan 3.5 kali air) Tekanan

SOAL Oli mesin dengan viskositas 0,2 N.s/m2 dilewatkan pada sebuah pipa berdiameter 1,8 mm dengan panjang 5,5 cm. Hitunglah beda tekanan yang diperlukan untuk menjaga agar laju alirannya 5,6 mL/menit !

TERIMA KASIH YUSRON SUGIARTO, STP, MP, MSc