TEORI BAHASA DAN AUTOMATA

Slides:



Advertisements
Presentasi serupa
Review Materi Widodo.com
Advertisements

Teori Bahasa dan Automata
Ekuivalensi NDFA ke DFA dan NDFA dengan E-move
Oleh: BAGUS ADHI KUSUMA, ST
B. Deterministic Finite Automata(DFA) (Otomata Berhingga Deterministik) Pada DFA, dari suatu “state ada tepat satu state berikutnya untuk setiap simbol.
Pertemuan 4 Non Deterministic Finite Automaton (NFA)
Bab VII FINITE STATE AUTOMATA DENGAN OUTPUT.
BAB II FINITE STATE AUTOMATA.
OTOMATA HINGGA.
BAB II FINITE STATE AUTOMATA.
BAB II FINITE STATE AUTOMATA.
BAB V EKSPRESI REGULER 1. Penerapan Ekspresi Reguler
Mahasiswa mampu menerapkan konsep Ekspresi Reguler
PUSH DOWN AUTOMATA & MESIN TURING
8. Otomata hingga dengan output
BAB V EKSPRESI REGULER 1. Penerapan Ekspresi Reguler
BAB III EKIVALENSI DFA KE NFA
NON DETERMINISTIC FINITE AUTOMATA DENGAN ε - MOVE
BAB II FINITE STATE AUTOMATA.
BAB II FINITE STATE AUTOMATA.
Pertemuan 3 FINITE AUTOMATA
Teori Bahasa dan Automata
NON DETERMINISTIC FINITE AUTOMATA DENGAN ε - MOVE
Non Deterministic Finite Automata dengan є – Move
TEORI BAHASA DAN AUTOMATA
FINITE STATE AUTOMATA (FSA)
FINITE STATE AUTOMATA (FSA)
Teori-Bahasa-dan-Otomata
BAB II FINITE STATE AUTOMATA.
OTOMATA DAN TEORI BAHASA FORMAL
Finite State Automata: Reduksi Jumlah State
OTOMATA DAN TEORI BAHASA 8
Teori Bahasa Otomata D. Sinaga, M.Kom.
FINITE STATE AUTOMATA (FSA)
Teori Bahasa dan Automata
Teori Bahasa dan Automata
By : Lisda Juliana Pangaribuan
Teori-Bahasa-dan-Otomata
Teori-Bahasa-dan-Otomata
TEORI BAHASA DAN AUTOMATA TATA BAHASA LEVEL BAHASA
ATURAN PRODUKSI TATA BAHASA REGULER
OTOMATA DAN TEORI BAHASA FORMAL
Teori-Bahasa-dan-Otomata
Reduksi Jumlah State pada Finite State Automata
OTOMATA DAN TEORI BAHASA FORMAL
NON DETERMINISTIC FINITE AUTOMATA DENGAN ε - MOVE
OTOMATA DAN TEORI BAHASA FORMAL
BAB II FINITE STATE AUTOMATA.
OTOMATA DAN TEORI BAHASA 2
NON DETERMINISTIC FINITE AUTOMATA DENGAN ε - MOVE
Pertemuan 6 KONVERSI NFA MENJADI DFA Lanjutan..
Bab VII FINITE STATE AUTOMATA DENGAN OUTPUT.
GABUNGAN & KONKATENASI
Teori-Bahasa-dan-Otomata
Finite State Automata ♦ model matematika yang dapat menerima input dan mengeluarkan output ♦ Memiliki state yang berhingga banyaknya dan dapat berpindah.
MESIN MOORE *YANI*.
Aturan Produksi Untuk Suatu Finite State Automata
Otomata & Teori Bahasa ( Week 4 )
Erwin Hidayat (M ) UTeM || 2010
Ekuivalensi NFA KE DFA *YANI*.
OTOMATA DAN TEORI BAHASA 3
Pertemuan4.
Tinjauan Instruksional Khusus:Mahasiswa akan dapat menjelaskan cara kerja Deterministic Finite Automata (DFA),Non-Deterministic Finite Automata (NDFA),Non.
Pushdown Automata (PDA)
OTOMATA DAN TEORI BAHASA 8.
Otomata & Teori Bahasa Finite State Automata: - Non Deterministic Finite Automata dengan -move - Penggabungan dan Konkatenasi FSA.
Otomata & Teori Bahasa ( Week 4 )
Reduksi Jumlah State pada Finite State Automata
Otomata & Teori Bahasa ( Week 4 )
OTOMATA DAN TEORI BAHASA 8.
Transcript presentasi:

TEORI BAHASA DAN AUTOMATA FINITE STATE AUTOMATA TEORI BAHASA DAN AUTOMATA

FINITE STATE AUTOMATA (FSA) Model matematika yang dapat menerima input dan mengeluarkan output. Memiliki state yang berhingga banyaknya dan dapat berpindah dari satu state kestate lainnya berdasar input dan fungsi transisi. Tidak memiliki tempat penyimpanan/memory, hanya bisa mengingat state terkini. Mekanisme kerja dapat diaplikasikan pada: elevator, text editor, analisa leksikal,pencek parity.

GAMBAR

CONT’ Misal input : 1101 Genap 1 Ganjil 1 Genap 0 Genap 1 Ganjil diterima mesin Misal input : 1100 Genap 1 Ganjil 1 Genap 0 Genap 0 Genap ditolak mesin Def 1. Finite State Automata dinyatakan oleh 5 tuple M=(Q , Σ , δ , S , F ) Q = himpunan state Σ = himpunan simbol input δ = fungsi transisi δ : Q × Σ S = state awal / initial state , S ∈ Q F = state akhir, F ⊆ Q

CONT’ Contoh diatas, Q = {Genap, Ganjil} Σ = {0,1} S = Genap F = {Ganjil } atau δ(Genap,0) = Genap δ(Genap,1) = Ganjil δ(Ganjil,0) = Ganjil δ(Ganjil,1) = Genap

SIFAT-SIFAT FSA FSA adalah mesin otomata dari bahasa regular, yang memiliki sifat: Jumlah state berhingga dan dapat berpindah-pindah dari satu state ke state lain. Perubahan state dinyatakan dengan fungsi transisi. FSA memiliki kemampuan mengingat terbatas (karena tidak memiliki tempat penyimpanan).

JENIS FSA Deterministic Finite Automata (DFA) : dari suatu state ada tepat satu state berikutnya untuk setiap simbol masukan yang diterima Non-deterministic Finite Automata (NFA) : dari suatu state ada 0, 1 atau lebih state berikutnya untuk setiap simbol masukan yang diterima

DETERMININISTIC FINITE AUTOMATA Contoh : pengujian parity ganjil. Contoh lain : Pengujian untuk menerima bit string dengan banyaknya 0 genap, serta banyaknya 1 genap. ♦ 0011 : diterima. ♦ 10010 : ditolak, karena banyaknya 0 ganjil Diagram transisi-nya :

CONT’ DFA nya Q = {q0 , q1 , q2 , q3 } Σ = {0,1} S = q0 F = { q0} fungsi transisi: δ( q0,011)= δ( q2,11) =δ( q3,1)= q2 Ditolak δ( q0,1010)= δ( q1,010) =δ( q3,10)=δ( q2,0)= q0 Diterima

CONT’ Contoh lain DFA : Variabel dalam bahasa pascal diawali oleh huruf (besar/kecil), dan diikuti dengan huruf atau angka.

NONDETERMINISTIC FINITE AUTOMATA Perbedaan dengan NFA: fungsi transisi dapat memiliki 0 atau lebih fungsi transisi G = ({q0 , q1 , q2 , q3, q4 }, {0,1}, δ , q0 , { q2 , q4}}

String diterima NFA bila terdapat suatu urutan transisi berdasar input, dari state awal ke state akhir. Harus mencoba semua kemungkinan.

Contoh : string 01001

Def 2. Dua buah FSA disebut ekuivalen apabila kedua FSA tersebut menerima bahasa yang sama Contoh : FSA yang menerima bahasa {an | n≥0 }

Def 3. Dua buah state dari FSA disebut indistinguishable (tidak dapat dibedakan) apabila: δ(q,w)∈F sedangkan δ(p,w)∉F dan δ(q,w) ∉F sedangkan δ(p,w) ∈F untuk semua w ∈ Σ* Def 4. Dua buah state dari FSA disebut distinguishable (dapat dibedakan) bila terdapat w ∈ Σ* sedemikian hingga:

Prosedur menentukan pasangan status indistinguishable: Hapus semua state yang tak dapat dicapai dari state awal. Catat semua pasangan state (p,q) yang distinguishable, yaitu {(p,q) | p ∈ F ∧ q ∉ F} Untuk setiap pasangan (p,q) sisanya, untuk setiap a∈ Σ, tentukan δ(p,a) dan δ(q,a).

CONTOH Hapus state yang tidak tercapai -> tidak ada. Pasangan distinguishable (q0,q4), (q1,q4), (q2,q4), (q3,q4). Pasangan sisanya (q0,q1), (q0,q2), (q0,q3), (q1,q2) (q1,q3) (q2,q3)

Catatan : jumlah pasangan seluruhnya :

Prosedur Reduksi DFA Tentukan pasangan status indistinguishable. Gabungkan setiap group indistinguishable state ke dalam satu state dengan relasi pembentukan group secara berantai : Jika p dan q indistingishable dan jika q dan r indistinguishable maka p dan r indistinguishable, dan p,q serta r indistinguishable semua berada dalam satu group. Sesuaikan transisi dari dan ke state-state gabungan.

Contoh Pasangan status indistinguishable (q1,q2), (q1,q3) dan (q2,q3). q1,q2,q3 ketiganya dapat digabung dalam satu state q123 Menyesuaikan transisi, sehingga DFA menjadi :