Analisis Data dengan SPSS

Slides:



Advertisements
Presentasi serupa
Evaluasi Model Regresi
Advertisements

ANALISIS DATA Dr. Adi Setiawan.
Operations Management
STATISTIK NON PARAMETRIK
Aplikasi Program Analisis Data (SPSS)
ANALISIS KUANTITATIF DALAM PENELITIAN GEOGRAFI
Regresi linier sederhana
Statistika Inferensi : Estimasi Titik & Estimasi Interval
KORELASI DAN REGRESI LINEAR SEDERHANA
KORELASI & REGRESI.
BAB VI REGRESI SEDERHANA.
pernyataan mengenai sesuatu yang harus diuji kebenarannya
Simple Regression ©. Null Hypothesis The analysis of business and economic processes makes extensive use of relationships between variables.
K O N S E P D A S A R A N A L I S I S R E G R E S I
ANALISIS KORELASI.
Anas Tamsuri UJI STATISTIK UJI STATISTIK.
oleh: Hutomo Atman Maulana, S.Pd. M.Si
MODUL 11 METODE PENELITIAN ANALISIS DATA (ANALISIS REGRESI)
FEB Univ. 17 Agustus 1945 Jakarta
STATISTIK INFERENSIAL
Contoh Korelasi oleh: Jonathan Sarwono
FEB Univ. 17 Agustus 1945 Jakarta
STATISTIK INFERENSIAL
REGRESI LINIER BERGANDA (MULTIPLE LINEAR REGRESSION)
REGRESI LINIER SEDERHANA
UJI VALIDITAS DAN UJI RELIABILITAS
KORELASI & REGRESI.
UJI ASUMSI KLASIK & GOODNESS OF FIT MODEL REGRESI LINEAR
Operations Management
REGRESI LINEAR DALAM ANALISIS KUANTITATIF
KORELASI Dosen : Dhyah Wulansari, SE., MM..
Pertemuan ke 14.
MENDETEKSI PENGARUH NAMA : NURYADI.
Pertemuan ke 14.
Analisis REGRESI.
MODUL 10 ANALISIS REGRESI
Operations Management
Operations Management
UJI INSTRUMEN Yustina Chrismardani.
ANALISIS DASAR DALAM STATISTIKA
ANALISA REGRESI LINEAR DAN BERGANDA
Operations Management
VALIDITAS DAN REABILITAS REGRESI BERGANDA Nori Sahrun, S.Kom., M.Kom
STATISTIK DESKRIPTIF STATISTIK DESKRIPTIF ADALAH STATISTIK YANG DIGUNAKAN UNTUK MENGANALISIS DATA DENGAN CARA MENDESKRIPSIKAN ATAU MENGGAMBARKAN DATA YANG.
X bebas/ mempengaruhi / independent Y Terikat/ dipengaruhi / dependent
TUGAS AKHIR PRAKTIKUM METODE STATISTIKA II
Binomial.
REGRESI LINIER BERGANDA (MULTIPLE LINEAR REGRESSION)
Analisis Regresi.
Disampaikan Pada Kuliah : Ekonometrika Terapan Jurusan Ekonomi Syariah
KORELASI DAN REGRESI SEDERHANA
BAB 7 persamaan regresi dan koefisien korelasi
KOMPUTER EPIDEMIOLOGI
TES HIPOTESIS.
METODOLOGI PENELITIAN
STATISTIK NON PARAMETRIK MINGGU 2
Pengantar Aplikasi Komputer II Analisis Regresi Linier Berganda
Pengujian Hipotesis 9/15/2018.
ANALISIS HUBUNGAN NUMERIK DENGAN NUMERIK (UJI KORELASI)
DASAR-DASAR UJI HIPOTESIS
Pengantar Aplikasi Komputer II Analisis Regresi Linier Sederhana
PRAKTIKUM STATISTIKA INDUSTRI
TUGAS AKHIR PENGARUH BIAYA OPERASIONAL TERHADAP PROFITABILITAS BANK (studi kasus pada Bank Mandiri periode ) Bandung   Oleh : ZENI YULIA MASKAR.
Misalkan kuesioner adalah sasaran tembak seperti pada gambar berikut ini. Anggap bahwa pusat sasaran tembak itu adalah target dari apa yang kita ukur.
ANALISIS REGRESI LINIER
Regresi Linier dan Korelasi
UJI STATISTIK  UJI PERBANDINGAN. UJI STATISTIK Dibedakan antara statistik parametrik dan non-parametrik Parameter lazimnya mengacu pada ciri populasi.
STATISTIK II Pertemuan 10-11: Analisis Regresi dan Korelasi
ANALISIS REGRESI DAN KORELASI
Analisis Regresi Regresi Linear Sederhana
Transcript presentasi:

Analisis Data dengan SPSS

SPSS terbagi menjadi : 1. File Lembar data/ data editor/ worksheet data : a. Data view : yaitu lembar kerja untuk mengisi data penelitian baik dientry secara langsung maupun hasil copy dari program lain seperti halnya dari excel. b. Variabel view : yaitu spread sheet untuk mendefinisikan variabel seperti pemberian nama dan label variabel. 2. File Output Hasil Analisis Data : file ini berada terpisah dengan data sehingga memerlukan penyimpanan di file yang berbeda.

ANALISIS DATA PENELITIAN DENGAN SOFTWARE SPSS : ANALISIS DESKRIPTIF

ANALISIS STATISTIK : DISKRIPTIVE

Lihat hasil analisis di Langkah-LAngkah Analisis Statistik Deskriptive Buka Program SPSS Masukkan data dan memberi nama variabel Gunakan menu : Analysis pd SPSS Descriptive Statistic di SPSS Descriptives……. Klik Option : Pilih Mean, Standart Deviasi, Sweakness, Maksimum, Minimum dan Range Lihat hasil analisis di Output SPSS

Transfer hasil analisis Ke MS-Word

N : Merupakan jumlah data yang dianalisis untuk tiap variabelnya Range : Selisih antara nilai data yang maksimal dengan yang paling kecil Minimum : Data paling kecil Maximum : data paling tinggi/ terbesar Mean : Nilai rata-rata Std. : Standart deviasi dari masing-masing data Dengan kepercayaan 95% data seharusnya terdistribusi : Rata-Rata ± 2* Standart Deviasi Skewness : untuk memperoleh informasi berkenaan dengan distribusi data, data terdistribusi normal atau tidak

ANALISIS DATA PENELITIAN DENGAN SOFTWARE SPSS : ANALISIS KORELASI

Spss : Analisis KORELASI Correlation Coefficients : For quantitative, normally distributed variables, choose the Pearson correlation coefficient. If your data are not normally distributed or have ordered categories, choose Kendall’s tau-b or Spearman, which measure the association between rank orders. Correlation coefficients range in value from 1 (a perfect negative relationship) and +1 (a perfect positive relationship). A value of 0 indicates no linear relationship. When interpreting your results, be careful not to draw any cause-and-effect conclusions due to a significant correlation.

Test of Significance : You can select two-tailed or one-tailed probabilities. If the direction of association is known in advance, select One-tailed. Otherwise, select Two-tailed. Flag significant correlations. Correlation coefficients significant at the 0.05 level are identified with a single asterisk, and those significant at the 0.01 level are identified with two asterisks.

a. Korelasi (Non-parametrik) Data skor (ordinal)

b. Korelasi (Parametrik) Sifat penting dari analasis korelasi adalah : Koefisien korelasi bernilai antara -1 dan +1 Korelasi dua variabel bersifat simetrik. Artinya korelasi X dengan Y akan sama dengan korelasi Y dengan X. Koefisien korelasi hanya menunjukkan tingkat hubungan antar dua variabel tetapi tidak menunjukkan hubungan kausal (sebab-akibat) diantara dua variabel tsb.

konsumsi dan pendapatan yaitu 98,1%. Hasil menunjukkan bahwa terdapat hubungan positif yg sgt kuat antara konsumsi dan pendapatan yaitu 98,1%. Catt: Income dan konsumsi dlm $ per bulan

ANALISIS DATA PENELITIAN ANALISIS REGRESI LINEAR SEDERHANA DENGAN SOFTWARE SPSS : ANALISIS REGRESI LINEAR SEDERHANA

Kharakteristik Regresi Sederhana : Terdiri dari variabel dependent (Y) dan independent (X) Regresi merupakan analisis sebab akibat Pengaruh dari variabel yang terlibat tidak bersifat timbal balik (hanya satu arah) Pendugaan koefisien menggunakan OLS (ordinary Least Square) Hal penting yang harus dipelajari : Teori yang diperlukan Model matematis yang dipilih Hasil pengujian statistik : Uji t : uji parsial koefisien Uji F : uji keseluruhan model Kekuatan model ditunjukkan dengan R-square

Contoh :

UJI- F : Uji Model dan koefisien Dari konsep dasarnya sebenarnya uji-F mendasrkan pada dua hipotesis yaitu : H0 : Semua koefisien variabel bebas adalah 0 (nol) H1 : Seamua koefisien variabel bebas tidak sama dengan nol. Dari hasil analisis di atas Sig = 0.000, dengan  = 5% maka dapat disimpulkan bahwa kita tolak H0 dan kita terima H1 (Kondisi ini merupakan dalil statistik). Artinya memang pendapatan mempengaruhi alokasi konsumsi. Jika seandainya ternyata hasil analisis dalam uji-F, nilai dari Sig = 0.052 maka dengan  = 5%, dapat disimpulkan bahwa kita tolak H1 dan kita terima H0. Artinya, variabel bebas (Pendapatan) tidak berpengaruh pada konsumsi.

UJI- t : Uji Parameter / Koefisien dalam Model Dalam konsep dasarnya pengujian statistik ini mendasarkan pada hipotesis : Uji Konstanta Intersep H0 : ß0 = 0 H1 : ß0 ≠ 0 Uji Koeff. Income H0 : ß1 = 0 H1 : ß1 ≠ 0 Dari tabel Coefficients diketahui bahwa ß0 = 24.455, Standart error koefisien = 6.414 dan DAN t- hitung = 3.813. Nilai Sig = 0.005. ini berarti jika kita menggunakan  = 5% = 0.05 maka t-hitung pasti lebih besar dari t-tabel karena nilai sig. Yaitu 0.005 adalah lebih kecil dari 0.05 ( yang kita tentukan). Demikian juga untuk koefisien X atau ß1 juga memiliki logika pemikiran yang sama.

Interpretasi Sehingga dapat disajikan hasil sebagai berikut : Konsumsi = 24.455 + 0.509* Income R2 = 0.962 S.E (6.414) (0.036) t-hitung = 3.813 14.243 Df = 8 Model yang ditemukan di atas memiliki nilai R2 = 0.962 ini berarti perubahan nilai independen viabel atau variabel bebas (income) dapat menjelaskan 0.962 atau 96.2 % dari perubahan dependen variabel atau variabel terikat (konsumsi), sedangkan sisanya (1-0.962 = 0.038 atau 3.8 %) dijelaskan variabel lain yang tidak dispesifikasi (tidak dimasukkan) dalam model . ATAU Variasi variabel dependen (terikat) dapat dijelaskan oleh variabel independen (bebas) sebesar 96.2%. Sementara sisanya (3.8%) dijelaskan oleh variabel lain yang tidak dimasukkan ke dalam model. Dalam pengertian ekonomi dapat dikatakan bahwa jika terdapat kenaikan income sebesar $ 1 per bulan maka akan mempengaruhi kenaikan pula pada konsumsi sebesar $ 0.509. Demikian juga bila terjadi penurunan income sebesar $ 1 per bulan maka akan berdampak pada penurunan konsumsi sebesar $ 0.509.

ANALISIS DATA PENELITIAN ANALISIS REGRESI LINEAR BERGANDA DENGAN SOFTWARE SPSS : ANALISIS REGRESI LINEAR BERGANDA

Output analisis regresi berganda dari SPSS di atas selanjutnya dapat dirumuskan sebagai berikut : PDB = -32137.4 + 2.441*TK + 344.033*Modal R2 =0.99 SE (2993.404) (6.125) (38.948) t-hit. 10.736 0.399 8.833 Df = 12

ANALISIS DATA PENELITIAN ANALISIS REGRESI LINEAR DUMMY VARIABEL DENGAN SOFTWARE SPSS : ANALISIS REGRESI LINEAR DUMMY VARIABEL

MODEL REGRESI LINEAR DENGAN DUMMY VARIABEL Variabel dummy digunakan sebagai upaya untuk melihat bagaimana klasifikasi-klasifikasi dalam sampel berpengaruh terhadap parameter pendugaan. Variabel dummy juga mencoba membuat kuantifikasi dari variabel kualitatif. Kita pertimbangkan model berikut ini: Y = a + bX + c D1

Contoh : Keterangan : D1 0 : Pinggir Kota 1 : Pusat kota

Terima Kasih