1. KONSEP TEMPERATUR Temperatur adalah derajat panas suatu benda. Dua benda dikatakan berada dalam keseimbangan termal apabila temperaturnya sama. Kalor.

Slides:



Advertisements
Presentasi serupa
Fisika Umum (MA-301) Topik hari ini (minggu 5)
Advertisements

Kecepatan efektif gas ideal
Kholil Lurrohim X-6 SMA N 1 Cisarua Fisika.
SUHU, PANAS, DAN ENERGI INTERNAL
Silvianus Alfredo N X-6 SMA N 1 Cisarua
Muhamad Fuad X-6 Remedial Fisika
CHAPTER 5 TEMPERATUR AND HEAT.
HOMEPROFIL MENU SK/KD MATERI SIMULASI GAMBAR VIDEO SOAL.
TEMPERATUR Temperatur. Skala temperatur, Ekspansi Temperatur,
Temperatur. Skala temperatur, Ekspansi Temperatur,
3. Radiasi Radiasi tidak memerlukan kontak fisik
Perpindahan Panas I PENDAHULUAN
Kalor NAMA : ROS NUUR NIM :
KALOR DAN PERPINDAHAN KALOR
Perpindahan Kalor Dasar
PERPINDAHAN KALOR.
SUHU DAN KALOR.
FISIKA TERMAL Bagian I.
KALOR DAN PERPINDAHAN KALOR
KALOR/PANAS DAN PENGUKURANNYA
SUHU DAN KALOR.
S U H U & K A L O R.
Pertemuan 12 TEORI GAS KINETIK DAN PERPINDAHAN PANAS(KALOR)
Suhu dan Kalor Standar Kompetensi
Pertemuan 20 Implementasi Listrik - Magnet dan Rangkaian Listrik
PERAMBATAN PANAS (Heat Transfer)
Pertemuan Temperatur, Kalor, Perpindahan Kalor dan Termodinamika
Pertemuan 11(OFC) SUHU DAN KALOR
TEMPERATUR DAN KALOR Pertemuan 26 Matakuliah: D0684 – FISIKA I Tahun: 2008.
Berkelas.
SUHU DAN KALOR.
Matakuliah : K0614 / FISIKA Tahun : 2006
KUIS.
KALOR.
SUHU & PEMUAIAN.
Sifat Panas Zat (Suhu dan Kalor)
SUHU DAN KALOR Dalam kehidupan sehari- hari sangat banyak didapati penggunaan energi dalam bentuk kalor: – Memasak makanan – Ruang pemanas/pendingin.
Perpindahan Kalor Dasar
Suhu dan Kalor Created by Mrs Mary.
TERMODINAMIKA YANASARI,S.Si.
SUHU DAN KALOR.
Energi dan Hukum 1 Termodinamika
SUHU/TEMPERATUR SUHU S uhu didefinisikan sebagai derajat panas dinginnya suatu benda. Alat untuk mengukur suhu adalah termometer, termometer ini memiliki.
TERMODINAMIKA dan Hukum Pertama
TEMPERATUR DAN KALOR Pertemuan 26
SUHU DAN KALOR Departemen Fisika
SUHU DAN KALOR.
Rina Mirdayanti, S.Si, M.Si
Kelas XII IPA SMA Muhammadiyah 7
Kalor Sumber Gambar : site: gurumuda.files.wordpress.com
SUHU DAN KALOR SKALA SUHU DAN KALOR PEMUAIAN ZAT
MODUL- 12 Panas & Temperature
BIMBINGAN TEKNIK UJIAN NASIONAL Kalor dan Pemuaian.
Standar Kompetensi Menerapkan konsep kalor dan prinsip konservasi energi pada berbagai perubahan energi Kompetensi Dasar Menganalisis pengaruh kalor terhadap.
Thermos = Panas Dynamic = Perubahan
Fak. Sains dan Tekonologi, UNAIR
Termodinamika Nurhidayah, S.Pd, M.Sc.
TERMODINAMIKA 1. Gas Ideal. n : Jumlah mol M : berat molekul
S U H U & K A L O R.
BIMBINGAN TEKNIK UJIAN NASIONAL Kalor dan Pemuaian.
Temperatur/Suhu Tim Fisika TPB.
SUHU DAN KALOR UNIVERSITAS ESA UNGGUL PERTEMUAN KE - IX
KALOR La Tahang Oleh: Materi “FISIKA DASAR” PEND.FISIKA 2015
DEPARTEMEN FISIKA IPB SUHU DAN KALOR DEPARTEMEN FISIKA IPB
Kalor dan Pemuaian BIMBINGAN TEKNIK UJIAN NASIONAL.
Bab VII Suhu dan Perubahannya.
Suhu & Kalor Kelompok 1 Putri ZulfaDumaria Elsi FebrianiM. Baitul Alham Nola ArdeliaKhalid Syahdan Mita Gusrianti.
KALOR DAN PERPINDAHAN KALOR BAB V. Pengertian Kalor Kalor Adalah bentuk energi yang berpindah dari benda yang suhunya tinggi ke benda yang suhunya rendah.
SUHU, KALOR, PEMUAIAN & TERMODINAMIKA MATERI Kelvin.
Kecepatan efektif gas ideal Dalam wadah tertutup terdapat N molekul gas bergerak ke segala arah (acak) dengan kecepatan yang berbeda Misalkan : N 1 molekul.
Transcript presentasi:

1. KONSEP TEMPERATUR Temperatur adalah derajat panas suatu benda. Dua benda dikatakan berada dalam keseimbangan termal apabila temperaturnya sama. Kalor (heat) adalah energi yang mengalir dari benda yang bertemperatur tinggi ke benda yang bertemperatur rendah. Menurut hukum ke Nol Termodinamika : Jika benda A berada dalam keseimbangan termal dengan benda B, sedang B setimbang termal dengan benda C, maka ketiga benda dalam keseimbangan termal satu terhadap lainnya.

SKALA TEMPERATUR Untuk mengukur temperatur digunakan termometer yang memanfaatkan sifat bahan tertentu yang memuai jika temperaturnya naik, misalkan bahan Air Raksa (Hg) Skala temperatur ditentukan oleh dua suhu referensi. 1. Titik Beku Air Suhu dimana air membeku pada tekanan satu atmosfer (1 atm). 2. Titik Didih Air Suhu dimana air mendidih pada tekanan satu atmosfer (1 atm).

Beberapa Skala Temperatur Celcius Fahrenheit Kelvin Rankin 100 212 373 672 Titik didih air Titik beku air 32 273 492

Konversi Skala Temperatur Skala temperatur merupakan skala linier, sehingga hubungan antara penujukan suhu benda menurut masing-masing Termometer merupakan hubungan linier. Satuan suhu menurut sistem satuan internasional adalah kelvin (K). T2 = a T1 + b Berdasarkan data titik beku dan titik didih air, dapat diperoleh nilai a dan b. Sebagai suatu contoh : K = C + 273 F = 1,8 C + 32 RK = 1,8 C + 492

CONTOH 1. Suhu suatu zat cair diukur menggunakan termometer X dan termometer berskala Celcius. Ketika Celcius menunjukkan 20, termometer X menunjukkan 68. Sedangkan ketika Celcius menunjukkan 60, termometer X menunjukkan 140. Berdasarkan skala manakah termometer-X tersebut dibuat ? 2. Ubahlah pernyataan berikut ke dalam satuan internasional : Benda yang suhuhnya 27 oC dipanaskan hingga suhunya naik 27 oC menjadi 54 oC.

2. KONSEP PEMUAIAN 2.1 Muai Panjang Ukuran suatu benda akan beubah bila suhunya dinaikkan. Kebanyakan benda berekspansi jika dipanaskan dan menyusut bila didinginkan. Jika Lo adalah panjang benda mula-mula pada suhu To, berekspansi secara linier pada waktu T dan panjang L. Maka pertambahan panjangnya L akan sebanding dengan panjang mula-mula Lo, yaitu L =  Lo T , atau : L = Lo (1 +  T )  = koefisien muai panjang dengan satuan K -1. Misalnya jika harga  tembaga 17 x 106 /C0 artinya batang tembaga pada 0oC panjangnya 1 cm, kalau dipanaskan sampai 1oC akan bertambah panjangnya 0,000017 cm. Pada tingkat mikroskopik, ekspansi termal pada zat padat ada penambahan jarak pemisahan rata- rata di antara atom-atom di dalam zat. Untuk bahan isotropik, perubahan panjang untuk sebuah perubahan temperatur adalah sama untuk semua garis di dalam zat. To L L T Lo

2.2. Muai Luas Jika suhu suatu bidang bertambah T, maka luas bidang tersebut akan bertambah sebedar A, A =  Ao T dimana  : koefisien muai luas dengan satuab K -1 , (untuk benda padat isotropik  ≈ 2  ) 2.3. Muai Volume Jika suhu suatu bidang bertambah T, maka volume benda akan bertambah V yang memenuhi hubungan : V =  Vo T dimana  : koefisien muai volume dengan satuan K -1 , (untuk benda padat isotropik  ≈ 3  )

CONTOH Sebuah lempeng berbentuk lingkaran dipanaskan sehingga diameternya bertambah 1 %. Berapa % kah pertambahan luasnya ? Jika digambarkan hubungan antara pertambahan panjang terhadap suhu untuk suatu benda yang koefisie muainya konstan (dalam interval yang sangat besar), akan diperoleh kurva garis lengkung. Tentukan fungsi kelengkungan tersebut ? Sebuah cincin berongga berupa sebuah pelat berongga seperti ditunjukkan oleh gambar di samping ini. Jika cincin dipanasi, maka ukuran rongganya akan : a. makin besar b. makin kecil c. tetap

3. KALOR DAN PERPINDAHAN KALOR 3.1. Kuantitas Kalor Kalor adalah energi termal yang mengalir dari benda bertemperatur tinggi ke benda bertemperatur rendah. Satuan kalor adalah Joule, kalori dan BTU (British Thermal Unit), dimana 1 Kal = 4,186 Joule Satu kilogram kalori adalah banyaknya kalor yang diperlukan untuk menaikkan suhu 10 C untuk 1 kilogram air. Kapasitas kalor C adalah banyaknya kalor yang diserap benda untuk menaikkan suhu satu satuan suhu (SI = 1 K) C = Q/T C = dQ/dT dimana satuan kapasitas panas (C) adalah kal/oC, Joule/kelvin. Untuk memperoleh suatu harga kapasitas yang khas didefinisikan kapasitas kalor spesifik (kalor jenis) c, yaitu kalor yang diperlukan untuk menaikkan suhu benda per satuan massa per satuan suhu. c = C/m c = Q/(m T) dimana satuan kapasitas panas jenis (c) adalah kal/gram. oC atau J kg-1 K-1.

mL cL (TL - Tw) = (ma ca + mk ck ) (Tw - Tak) Jumlah kalor yang harus diberikan kepada sebuah benda bermassa m dan mempunyai kalorjenis c, untuk menaikan temperaturnya adalah : Tf Q = m  c dT Ti Persamaan ini digunakan dalam prinsip kerja Kalorimeter. Kalorimeter digunakan untuk mengukur jumlah kalor. Ada dua jenis kalorimeter yaitu kalorimeter air dan kalorimeter arus kontinu. Berdasarkan prinsip bahwa kalor yang diberikan sama dengan kalor yang diterima, maka persamaan yang berlaku adalah : mL cL (TL - Tw) = (ma ca + mk ck ) (Tw - Tak) dimana : L = logam tertentu, a = air, k = kalorimeter, w = keadaan akhir

H = Arus Kalor [joule/s] k = konduktivitas termal zat 3.2. Perpindahan Kalor Konduksi Konduksi panas/hantaran adalah perpindahan energi termal atau kalor dalam molekul zat yang berdekatan tanpa perubahan molekul itu sendiri, akibat perbedaan temperatur. H ≡ Q / t H = - k A (dT/dx) H = k A (T2-T1) / L dimana : H = Arus Kalor [joule/s] k = konduktivitas termal zat [(kkal/detik.m).oC ; J/s.m.K] b.Konveksi Konveksi adalah perpindahan panas dari suatu tempat ketempat yang lain yang dibawa oleh fluida panas itu. Jika fluida yang dipanaskan itu dipompa /didorong oleh bahan lain disebut konveksi paksa, kalau fluida mengalir karena perbedaan kerapatan disebabkan perbedaan temperatur disebut konveksi alamiah/bebas Laju aliran panas konveksi dinyatakan oleh : H = hc A t hc ; koefisien konveksi T2 T1 A L T2  T1

c.Radiasi Radiasi adalah perpindahan energi melalui gelombang elektromagnetik. Pemancaran energi ini tidak memerlukan media material penghantar. Energi ini disebut energi radiasi dalam bentuk gelombang elektromagnetik, tetapi dengan intensitas berbeda. Benda hitam (Black Body) adalah benda yang mampu menyerap hampir seluruh energi radiasi yang menimpanya. Jumlah energi radiasi yang dipancarkan persatuan waktu persatuan luas oleh benda hitam adalah I = e  A T4 dimana : I : daya yang dipancarkan ke satu satuan luas = dP/dA e : daya pancar permukaan bahan (emisivitas); 0<e<1  : Konstanta radiasi Stefan-Boltzman (5,67 x 10-8 Watt/ m2.K4 ) T : temperatur (Kelvin)

4. GAS IDEAL DAN TEORI KINETIK 4.1 Hukum-Hukum Gas Hasil eksperimen Boyle menunjukan jika gas temperaturnya dibuat tetap maka perubahan volume sistem akan diikuti dengan perubahan tekanan. Sehingga hasil kali volume dan tekanannya tetap . V  1 / P PV = konstan, atau P1V1 = P2V2 (Hukum Boyle) Persamaan ini tepat untuk gas ideal yaitu gas yang energi ikat antar molekulnya dapat diabaikan. Charles melakukan pendekatan untuk tekanan yang konstan, maka volume gas akan berbanding lurus terhadap temperatur absolut (273,15 oC). Hasil yang didapat adalah V  T Gay-Lussac mengukur koefisien muai ruang pada tekanan konstan. Hasil percobaannya menunjukkan tekana gas berbanding lurus dengan temperatur absolut: P  T

4.2. Persamaan Tingkat Keadaan Gas Ideal Tingkat keadaan sistem dinyatakan sebagai kondisi fisis sistem. Keadaan sistem bermassa m ditunjukkan oleh besaran P, V, T [Tekanan, Volume dan Temperatur]. Hubungan ketiga besaran ini disebut Persamaan Tingkat Keadaan Gas Ideal, yaitu (Hukum Boyle-Gay Lussac)

Teori Kinetik Gas Model Mikroskopis Gas Ideal Gas ideal terdiri dari zarah yang jumlahnya amat besar Zarah-zarah itu tersebar merata dalam sluruh ruang yang tersedia Zarah-zarah itu senantiasa bergerak secara acak ke segala arah Jarak antar zarah jauh lebih besar daripada ukuran zarah Tidak ada gaya interaksi antar zarah kecuali saat terjadi tumbukan Semua tumbukan bersifat elastis sempurna Hukum-hukum Newton tentang gerak berlaku.

Perubahan momentum untuk satu tumbukan : (mv) = mvx - (-mvx) = 2 mvx Secara mikroskopik tekanan gas dicari dengan teori kinetik, dimisalkan sebuah kotak berisi N partikel. Seandainya partikel tidak saling bertumbukan, dan hanya akan bertumbukan pada dinding kotak Perubahan momentum untuk satu tumbukan : (mv) = mvx - (-mvx) = 2 mvx Selang waktu antara dua kali tumbukan pada dinding sebesar t = 2l/vx Gaya rata-rata untuk beberapa tumbukan : (mv) 2 mvx mvx 2 F = ——— = ——— = —— t 2l/vx l y l A      x  z

P V = 2/3 Ek Gaya pada dinding untuk N partikel m m _ _ _ _ _ _ _ _ F = — ( vx1 2 + vx2 2 + ….. + vxN 2 ) = — N vx 2 l l _ _ _ _ _ _ _ dimana v 2 = vx 2 + vy 2 + vz 2 , dan vx 2 = vy 2 = vz 2 _ _ atau v 2 = 3 vx 2 Hasil substitusi diperoleh _ m v 2 F = — N — l 3 Tekanan pada dinding menjadi, _ _ 1 Nmv 2 1 Nmv 2 P = F/A = — —— = — ——— 3 A l 3 V dapat ditulis lebih jelas : 2 _ PV = — N ( ½ mv 2 ) 3 P V = 2/3 Ek

Teori Ekipartisi Energi Energi Kinetik rata-rata setiap partikel gas ideal per derajat kebebasasn adalah : Ek = ½ kT dengan k merupakan konstanta Boltzmann : k = 1,38 . 10-23 J/K Gas ideal monoatomik memiliki 3 derajat kebebasan, yaitu kebebasan translasi, sehingga Ek = 3 x ½ kT. Dengan demikian PV = NkT Gas ideal diatomik Pada suhu randah derajat kebebasannya 3 (translasi) sehingga : Ek = 3 x ½ kT. Pada suhu sedang, derajat kebebasannya 5 [3 translasi, 2 rotasi] sehingga : Ek = 5 x ½ kT. Pada suhu tinggi, derajat kebebasannya 7 [3 translasi, 2 rotasi, 2 vibrasi] sehingga : Ek = 7 x ½ kT.

Persamaan Umum Gas Ideal Untuk Gas ideal monoatomik maupun diatomik dengan fsuhu rendah berlaku : P V = N k T atau P V = n R T Dengan : n = N/NA menyatakan jumlah mol gas. NA = bilangan Avogadro = 6,023 x 1023 partikel/mol k = konstanta Boltzmann = 1,38 . 10-23 J/K R = k NA = 8,413 J/K = tetapan Umum Gas Ideal

ENERGI DALAM GAS Energi dalam gas merupakan jumlah seluruh energi kinetik gas., sehingga untuk gas ideal, energi dalam hanya bergantung suhu gas. Untuk gas ideal monoatomik : U = 3/2 nRT Gas ideal diatomik Pada suhu randah derajat kebebasannya 3 (translasi) sehingga : Ek = 3/2 nRT. Pada suhu sedang, derajat kebebasannya 5 [3 translasi, 2 rotasi] sehingga : Ek = 5/2 nRT. Pada suhu tinggi, derajat kebebasannya 7 [3 translasi, 2 rotasi, 2 vibrasi] sehingga : Ek = 7/2 nRT.

V P T V P T A. Permukaan P, V, T untuk Gas Ideal ( PV = n RT) T2 T3 T1 V1 < V2 < V3 Proses Isotermis Proses Isochorik Proses Isobarik

B. Permukaan P, V, T untuk Substansi Riil Substansi mendekati gas ideal pada P rendah, dan menjauhi gas ideal pada P tinggi dan T rendah. Substansi dapat berubah dari fase gas ke cair/padat. Pada massa tetap/konstan grafik P, V, T dapat digambarkan sbb : C. Titik Tripel dan Titik Kritis Titik Tripel adalah titik dimana substansi berada dalam kesetimbangan tiga fase, untuk air : T = 273,16 oK = 0,01 oC, dan P = 6,03 . 10-3 atm. Titik Kritis adalah titik dimana substansi berada dalam kesetimbangan dua fase, untuk air : T = 647,4 oK = 374 oC, dan P = 218 atm. P(atm) Titik Kritis P V padat-uap cair uap cair-uap padat-cair padat gas Cair Gas c Padat Uap T(oC ) Titik Tripel

4.5. Kerja Jika piston dalam suatu silinder digerakkan dengan tekanan p pada luas penampang A maka gaya pada piston itu adalah pA. Jika piston bergerak sejauh ds maka kerja yang dilakukan piston adalah : dW = F . ds = P A ds = P dV dimana : A ds = dV Pada umumnya tekanan tidak akan konstan selama pergeseran. vf Jika tekanan berkurang dengan bertambahnya volume maka :W =  dW =  p dV vi PA A ds pi vi pf vf 1 2 b a P V (W12 ) a tidak sama dengan (W12 ) b Besar W12 = daerah di bawah kurva P-V, dimana kerja bergantung pada tingkat keadaan awal dan akhir, juga pada lintasan proses W = + , bila berekspansi W = - , bila dikompresi Proses isobaris : W = P (V2 - V1) Proses isochoris : W = 0 2 Proses isotermis : W =  p dV =  (mRT/V) dV = mRT ln (V2/V1) : untuk gas ideal 1

CONTOH Sejumlah gas monoatomik yang tekanannya 106 pacal, volumenya 2 liter. Gas tersebut mengalami ekspansi isobarik hingga volumeya 3 liter. a. Berapa Usaha yang dilakukan oleh gas tersebut ! b. Berapa Kenaikan energi dalam gas tersebut ! 2. Sejumlah gas monoatomik yang tekanannya 106 pacal, volumenya 2 liter. Gas tersebut mengalami ekspansi isotermik hingga volumeya 3 liter. 3. Sejumlah gas monoatomik yang tekanannya 106 pacal, volumenya 2 liter. Gas tersebut mengalami proses pada volume tetap hingga tekanannya 3 x 106 pacal.

5. HUKUM KE-1 TERMODINAMIKA Termodinamika mempelajari fenomena panas, energi dan kerja yang dilakukan pada suatu proses termodinamika. Dalam hal ini benda menjadi fokus perhatian disebut sistem, sedang yang lainnya disekitarnya disebut lingkungan. Sistem dipisahkan dari lingkungan oleh dinding pembatas (Boundary). Proses termodinamika terjadi pada sistem yang bergerak dari suatu keadaan kesetimbangan ke kesetimbangan lainnya, dengan berinteraksi dengan lingkungan. Bila suatu zat diubah dari keadaan 1 ke 2 kemudian panas (Q) dan kerja (W) yang dilakukan diukur, ternyata selisih Q-W sama untuk semua lintasan yang menghubungkan 1 dengan 2, Selisih Q-W menyatakan perubahan energi dalam zat tersebut. Jadi : dQ = dU + dW Q = U + W Q - W = U2 - U1 W U Q

Q (-) bila kalor keluar sistem/gas Besarnya harga Q dan W tergantung pada lintasan sedangkan U tidak ter gantung pada lintasan (jenis proses) dan hanya bergantung pada keadaan awal dan akhir sistem. Persamaan diatas menyatakan hukum ke-1 Termodinamika, dengan perjanjian : Q (+) bila kalor masuk sistem/gas Q (-) bila kalor keluar sistem/gas W (+) bila sistem/gas melakukan kerja W(-) bila sistem/gas dikenai kerja ∆U (+) energi dalam sistem/gas naik ∆U (-) energi dalam sistem/gasturun Semua besaran harus dinyatakan dengan satuan yang sama

Kapasitas kalor dan Kalor Jenis Gas Ideal Kapasitas kalor gas didefinisikan sebagai C = dQ/dT. Untuk proses yang terjadi pada volume tetap (proses isokhorik), didefinisikan kapasitas kalor pada volume tetep : Cv = dQ/dT Karena pada proses isokhorik dV = 0, maka dU = dQ sehingga : Cv = dU/dT atau dU = Cv dT Sedangkan pada proses isobarik, didefinisikan kapasitas kalor pada tekanan tetap sebagai : Cp = dQ/dT Cp = (dU + dW)/dt = dU/dT + p dV/dT = Cv + nR Didefinisikan pula tetapan Laplace : γ = Cp/Cv

Jika kedua ruas diintehral, diperoleh : Untuk Proses Adiabatik Proses yang terjadi pada suatu sistem dimana tidak ada panas yang masuk maupun keluar, (Q = 0), yaitu jika sistem diisolasi dari pengaruh panas. Dalam hal ini berlaku persamaan : U = U2 - U1 = - W Kerja W yang dilakukan terhadap zat berubah semua menjadi penurunan energi dalam U dU = -dW Cv dT = - p dV Jika kedua ruas diintehral, diperoleh :

Dengan mengganti T dengan PV/nR diperoleh : P1V1γ = P2V2γ atau PVγ = konstan Untuk Proses Isochorik Proses yang terjadi pada sistem dengan volume konstan (V=0, maka W=0). Q = U = U2 - U1 Semua kalor Q yang masuk digunakan untuk menaikan energi dalam dU = Cv dT Untuk Proses Isotermik Proses yang terjadi pada sistem dengan temperatur T konstan (kasus tertentu pada gas ideal). U = U2 - U1 = 0 ; Q = W = p (V2 - V1)

Untuk Proses Isobarik Proses yang terjadi pada suatu sistem dengan tekanan P konstan Dalam hal ini berlaku persamaan : dQ = dW + dU dimana : dQ = n cp dT dW = P dV = nR dT sehingga, n cp dT - nR dT = n cv dT cp - R = cv  = cp / cv = tetapan Laplace Untuk : gas monoatomik,  = 1,67 gas dwiatomik,  = 1,4

SIKLUS Siklus merupakan beberapa proses yang dialami oleh sejumlah gas secara berulang-ulang. Suatu siklus dapat tersusun dari tiga langkah, empat langkah, bahkan lebih dari itu. Pentingnya siklus ini dibicarakan karena kita menginginkan terciptanya suatu mesin yang dapat bekerja secara terus menerus. Siklus-siklus berikut ini berturut-turut terdiri dari 3 langkah, 4 langkah dan 4 langkah. P P P V V V

EFISIENSI MESIN KALOR Jika suatu mesin kalor setiap siklusnya menyerap kalor sebesar Q dan melakukan usaha sebesar W, maka Efisiensi mesin tersebut didefinisukan sebagai : Jika dinyatakan dalam prosen, efisiensi tersebut dinyatakan sebagai :

CONTOH P(KPc) V(liter) Sejumlah gas dalam ruang tertutup volumenya 1 liter. Gas tersebut dipanaskan pada tenanan tepat hingga suku mutlaknya menjadi dua kali semula. Berapa usaha yang dilakukan gas, kenaikan sergi dalamnya, dan energi yang diperlukannya ? γ = 5/3 Seperti soal nomor-1 tetapi prosesnya berlangsung pada volume tetap ? Seperti soal nomor-1 untuk proses adiabatik ? Tentukan efisiensi mesin kalor yang siklusnya sebagai berikut : P(KPc) 20 10 V(liter) 2 4

6. HUKUM KEDUA TERMODINAMIKA Dari proses isotermis diperoleh bahwa seluruh kalor yang diserap menjadi usaha. Tetapi karena ada keterbatasan harga volume, dimana proses harus berhenti. Maka sistem harus dikembalikan kekeadaan semula agar kalor ber- ubah kembali menjadi kerja. Hal ini sulit terjadi. Untuk itu dibuat proses siklus, agar keadaan sistem kembali kekeadaan semula dimana energi dalam sistem sama dengan semula. Hukum Ke-Dua Termodinamika : KELVIN-PLANCK Tidak mungkin sistem melakukan proses dari satu reservoir dan mengubah seluruh panas itu menjadi kerja, dan berakhir pada keadaan yang sama seperti pada awal proses. CLAUSIUS Tidak mungkin membuat mesin pendingin yang dapat mentransfer panas dari benda dingin ke benda yang lebih panas, tanpa adanya kerja. Q1 Q3 Q2 T1 Siklus - isotermik - isobarik - isokhorik P V Q+W isotermik P V

6.1. Contoh Penerapan Hukum Kedua Termodinamika : Jika sistem mengalami proses, berubah dari keadaan awal dan akhir dimana sistem dapat kembali kekeadaan awal, tanpa adanya kalor yang berpindah dan tiada kerja yang dilakukan, maka proses dikatakan Reversibel. Dan proses kebalikan dari reversibel adalah Ireversibel. Kebanyakan energi diperoleh dari proses perpindahan panas, maka diperlukan alat yang dapat menyerap panas dari sumber dan menkonversikannya menjadi energi mekanik yang disebut Mesin Panas Mesin yang bekerja kebalikan dari mesin panas adalah Mesin Pendingin (refrigerator) A. Mesin Panas Reservoir Panas TH Reservoir Dingin TC QH QC W Q = W QH - |QC| = W W QH - |QC| |QC| Efisiensi  = — = ———— = 1 - —— QH QH QH

B. Mesin Pendingin Cara kerja mesin pendingin merupakan kebalikan proses kerja mesin panas Pada proses ini kerja diberikan pada reservoir suhu rendah Reservoir Panas TH Reservoir Dingin TC QH QC W Q = W |QH| = QC + W QC QC TC Koefisien Kerja CP = — = ———— = ——— W QH - QC TH - TC CP = Coefisien Performance CP >> mesin makin baik

Efisiensi = ____________________________ Panas yang diberikan C. Mesin Carnot Mesin Carnot mewakili ungkapan pertama hukum II termodinamika. Dalam mesin ini bekerja dua proses yaitu isotermis dan adiabatik Daya guna mesin ini dihitung sebagai berikut : Kerja yang dihasilkan Efisiensi = ____________________________ Panas yang diberikan  = W / QH = (QH - QC) / QH  = 1 - ( QC/QH ) Atau :  = 1 - ( TC /TH ) QH QC W TH TC P V

7. ENTROPI Entropi adalah property Fisis suatu sistem yang dapat diukur, dapat dinyatakan dalam angka dan satuan. Jika sebuah sistem yang terisolasi dari lingkungan dapat berada dalam dua keadaan yang mempunyai energi yang sama. Bagaimana cara perpindahannya, antara keadaan 1 dengan keadaan 2 dan dapat dijelaskan dengan Entropi. Entropi (S) dapat diinterpretasikan sebagai ketidakteraturan sistem, dimana entropi dapat bertambah atau tetap. Apabila sistem menyerap kalor Q pada suhu mutlak T, maka perubahan Entropi yang dialami sistem : Q dS = — T Perubahan entropi dari keadaan 1 (awal) ke keadaan 2 (akhir) dalam proses reversibel : 2 Q S = S2 - S1 =  — 1 T

Dalam proses reversibel dan isotermal : S = Q / T Dalam proses reversibel dan adiabatik : Q = 0 ; S = 0 [proses Isentropik] Dalam proses reversibel dan isotermal : S = Q / T Dalam proses reversibel dan siklus : Q S =  — = 0 T Dalam proses reversibel untuk gas ideal : 2 Q 2 dT 2 dV S =  — =  n cv — +  nR — 1 T 1 T 1 V S = n cv ln (T2 /T1 ) + nR ln (V2 / V1 )