BAB II SANDI BINER 2.1 Sandi 8421 Goto menu BAB II SANDI BINER 2.1 Sandi 8421 Sandi 8421 menyatakan masing-masing angka desimal dengan ekivalen biner 4-bitnya. Sebagai contoh, bilangan desimal 429 dirubah ke dalam ekivalen binernya sbb: 4 2 9 0100 0010 1001 Jadi dalam sandi 8421, bilangan 0100 0010 1001 menyatakan bilangan 429 desimal sandi 8421 identik dengan biner sampai bilangan desimal 9. oleh karena itu sandi ini disebut 8421 dimana bobot-bobot dalam suatu kelompok adalah 8, 4, 2, dan 1. Yang perlu diperhatikan adalah bahwa untuk bilangan 0 sampai 9 sandi 8421 sama dengan sandi biner tetapi mulai angka desimal 10, 11, 12 dst akn berbeda dengan nilai binernya, sebagai contoh desimal 12 = 1100 biner. Tetapi dalam sandi 8421 angka 12 = 0001 0010 2.2 Sandi BCD sandi 8421 adalah salah satu dari jenis sandi BCD, selain sandi 8421 ada beberapa jenis sandi BCD diantaranya:
2.3 Sandi – Sandi BCD 4-bit lain 2.3.1 Sandi 2421 Goto menu 2.3 Sandi – Sandi BCD 4-bit lain 2.3.1 Sandi 2421 pada dasarya perubahan nilai desimal ke sandi 2421 ini sama dengan merubah desimal ke sandi 8421, hanya yang mebedakan adalah nilai konversi dari sandi 2421 menjadi nilai desimalnya. Seperti pada tabel di bawah ini: semua sandi di dalam tabel merupakan sandi berbobot, artinya semua kelompok bilangan sandi tersebut merupakan bobot dari bilangan desimal yang diwakilinya. Desimal 8421 7421 5421 2421 1 2 3 4 5 6 7 8 9 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
17 desimal dirubah menjadi ekses-3 1 7 3 + 3 + 4 10 Goto menu 2.3.2 Sandi Ekses -3 Sandi ekses-3 merupakan sandi BCD penting lainnya. Untuk mengkodekan sebuah bilangan desimal ke dalam bentuk ekses-3 nya, tambahkan 3 kepada masing – masing angka desimalnya sebelum mengubah ke biner, sebagai contoh: 17 desimal dirubah menjadi ekses-3 1 7 3 + 3 + 4 10 setelah kita tambahkan dengan 3 maka bilangan tersebut menjadi 4 10, setelah itu barulah kita rubah masing – masing angkanya kedalam biner 4 bit menjadi: 0100 1010 maka bilangan 17 desimal = 0100 1010 ekses-3
Goto menu BAB III GERBANG LOGIKA Pada bab ini kita akan mempelajari bagaimana sebuah operasi biner di wujudkan dalam sebuah rangkaian elektronika, dengan menggunakan gerbang logika sebagai komponen mediatornya. Gerbang (Gate) adalah suatu rangkaian logika dengan satu keluaran dan satu atau beberapa masukan; sinyal keluaran hanya terjadi untuk kombinasi-kombinasi sinyal masukan tertentu. 3.1 Jenis – Jenis Gerbang Logika 3.1.1 Gerbang OR Gerbang OR adalah sebuah gerbang dasar logika yang mempunyai fungsi dan simbol seperti di bawah ini: Gambar3a. Gerbang OR 2 input Q = A + B, dimana A, B : input / masukan Q : output / keluaran Fungsi gerbang diatas dapat diganti dengan table kebenaran :
tabel kebenaran gerbang OR 2 input Goto menu tabel kebenaran gerbang OR 2 input Tabel di atas memperlihatkan kondisi masukan – keluaran pada suatu gerbang OR. Marilah kita kaji bersama: gerbang OR memberikan keluaran ‘1’ apabila salah satu atau semua masukannya adalah ‘1’. Dengan perkataan lain bahwa gerbang Or merupakan gerbang salah satu atau semua. A B Q 1
Gambar3b. Gerbang AND 2 input Q = A x B, dimana A, B : input / masukan Goto menu 3.1.2 Gerbang AND Gerbang AND adalah sebuah gerbang dasar logika yang mempunyai fungsi dan simbol seperti di bawah ini: Gambar3b. Gerbang AND 2 input Q = A x B, dimana A, B : input / masukan Q : output / keluaran Fungsi gerbang diatas dapat diganti dengan table kebenaran :
Goto menu tabel kebenaran gerbang AND 2 input Tabel di atas memperlihatkan kondisi masukan – keluaran pada suatu gerbang AND. Marilah kita kaji bersama: gerbang AND memberikan keluaran ‘1’ apabila semua masukannya adalah ‘1’. Dengan perkataan lain bahwa gerbang AND merupakan gerbang semua atau tak ada artinya jika tidak semua masukannya bernilai ‘1’ maka tidak akan ‘mengeluarkan’ (keluaran =‘0’) A B Q 1
Simbol dan fungsi gerbang NOT seperti yang di bawah ini: Goto menu 3.1.3 Gerbang NOT Gerbang NOT sebenarnya adalah gerbang dasar yang merupakan fungsi gerbang pembalik sinyal masukan, dimana semua kondisi masukan akan di balik, atau dengan kata lain kondisi keluaran selalu merupakan kebalikan dari kondisi masukan. Simbol dan fungsi gerbang NOT seperti yang di bawah ini: Gambar3c. gerbang INV / NOT Q = A (simbol garis diatas huruf A adalah menunjukkan nilainya adalah kebalikan) A : input / masukan Q : output / keluaran Fungsi gerbang diatas dapat diganti dengan table kebenaran : Tabel 5. tabel kebenaran gerbang NOT / INV A Q 1
Goto menu 3.1.4 Gerbang NOR Gerbang NOR merupakan gerbang dengan gabungan fungsi gerbang NOT dan OR, artinya bahwa gerbang NOR merupakan gerbang OR yang keluarannya dibalik dengan fungsi gerbang NOT. Simbol dan karakteristik gerbang NOR dapat dilihat spt dibawah: Gambar3d. Gerbang NOR 2 input Q = A + B A, B : input / masukan Q : output / keluaran Fungsi gerbang diatas dapat diganti dengan table kebenaran : Tabel kebenaran gerbang NOR 2 input A B Q 1
Gambar3e. gerbang NAND 2 input Q = A x B A, B : input / masukan Goto menu 3.1.5 Gerbang NAND gerbang NAND juga merupakan gerbang dengan fungsi gerbang gabungan antara gerbang AND dan NOT, dengan simbol dan fungsi: Gambar3e. gerbang NAND 2 input Q = A x B A, B : input / masukan Q : output / keluaran Fungsi gerbang diatas dapat diganti dengan table kebenaran : Tabel kebenaran gerbang NAND 2 input A B Q 1
Gambar3f. gerbang XOR 2 input Q = A B A, B : input / masukan Goto menu 3.1.6 Gerbang XOR Disamping gerbang gerbang dasar yang sudah di bahas di atas terdapat juga gerbang logika khusus yang di sebut dengan gerbang Eksklusif OR atau disingkat XOR, dikatakan sebagai gerbang exklusif karena gerbang XOR memiliki fungsi yang tidak lazim seperti gerbang-gerbang lain, untuk lebih jelas marilah kita lihat lebih jauh tentang gerbang ini. Gambar3f. gerbang XOR 2 input Q = A B A, B : input / masukan Q : output / keluaran fungsi matematik dari gerbang ini dapat di ganti dengan: Q = AB + AB
Tabel kebenaran gerbang XOR 2 input A B Q Goto menu Fungsi gerbang diatas dapat diganti dengan tabel kebenaran : Tabel kebenaran gerbang XOR 2 input A B Q 1
Fungsi gerbang diatas dapat diganti dengan tabel kebenaran : Goto menu 3.1.7 Gerbang XNOR Gerbang XNO merupakan gerbang exlusif dengan fungsi yang hampir sama dengan gerbang sebelumnya yaitu XOR, hanya fungsinya merupakan kebalikan dari gerbang XOR. Gambar3g. gerbang XNOR Q = A B A, B : input / masukan Q : output / keluaran Fungsi gerbang diatas dapat diganti dengan tabel kebenaran :
Goto menu Tabel kebenaran gerbang XNOR 2 input A B Q 1