(Guru Besar pada Fakultas Ekonomi dan Manajemen

Slides:



Advertisements
Presentasi serupa
Angelina Ika Rahutami Unika Soegijapranata Gasal 2011/2012.
Advertisements

(Guru Besar pada Fakultas Ekonomi dan Manajemen
(Guru Besar pada Fakultas Ekonomi dan Manajemen
Disusun Oleh: Isarmadriani Meinar ( ) JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNIK UNIVERSITAS SULTAN AGENG TIRTAYASA CILEGON-BANTEN 2010 A MULTIVARIATE.
REGRESI LINIER BERGANDA
Angelina Ika Rahutami Unika Soegijapranata Gasal 2011/2012.
STATISTIKA INFERENSI : UJI HIPOTESIS (SAMPLE TUNGGAL)
Bab 6. Pengujian Hipotesis
Angelina Ika Rahutami Unika Soegijapranata Gasal 2011/2012.
ANALISIS REGRESI DAN KORELASI
REGRESI LINIER SEDERHANA
TIME SERIES DAN STASIONERITAS
(Guru Besar pada Fakultas Ekonomi dan Manajemen
(Guru Besar pada Fakultas Ekonomi dan Manajemen
Vector Auto Regression (VAR) SEKOLAH TINGGI ILMU STATISTIK
UJI UNIT ROOT PADA DATA PANEL
Program Studi Statistika Semester Ganjil 2011
Vector Error Correction Model (VECM)
STATISTIKA INFERENSIA
KONSEP DAN PEMODELAN ARCH/GARCH
SISTEM PERSAMAAN ALJABAR TAK-LINEAR
STATISTIKA INFERENSIA
KONSEP DAN PEMODELAN ARIMA (AUTOREGRESSIVE INTEGRATED MOVING AVERAGE)
(Guru Besar pada Fakultas Ekonomi dan Manajemen
(Guru Besar pada Fakultas Ekonomi dan Manajemen Institut Pertanian Bogor) Lektor pada Fakultas Ekonomi Universitas Jambi © Bambang Juanda & Junaidi: Ekonometrika.
Ekonometrika Program Studi Statistika, semester Ganjil 2012/2013 Dr. Rahma Fitriani, S.Si., M.Sc.
KONSEP DAN PENGUJIAN UNIT ROOT
BAB 1 MENGENAL SIMULASI.
Desy Putma H.(M ) Gunawan Prabowo(M ) Luk Luk Alfiana(M ) Nur Indah(M ) Tatik Dwi Lestari(M ) Anggota kelompok 5 :
Pemodelan Volatilitas
Konsep Dasar Ekonometrika. Definisi Ekonometrika  cabang ilmu yang mengaplikasi metode-metode statistik dalam ilmu ekonomi.  ilmu yang berhubungan dengan:
Referensi T. Sunaryo : Ekonomi Manajerial EKMA4312 D. Salvatore : Managerial Economics Ed. 5 th Sumber-Sumber Lain Yang Relevan 2.
PERSAMAAN SIMULTAN Pada kenyataannya banyak situasi dimana hubungan sebab akibat tidak hanya terjadi satu arah, tetapi terjadi dua arah. Seperti pada.
PROSEDUR – PROSEDUR POPULER DALAM EVIEWS
PERTEMUAN 6 Teknik Analisis dan Penyajian Data
K O N S E P D A S A R A N A L I S I S R E G R E S I
(Guru Besar pada Fakultas Ekonomi dan Manajemen
REGRESI LINIER BERGANDA (MULTIPLE LINEAR REGRESSION)
REGRESI LINIER SEDERHANA
Ekonometrika Lanjutan
(Guru Besar pada Fakultas Ekonomi dan Manajemen
ANALISIS JALUR MODUL 12 Analisis Jalur.
X. ANALISIS DATA Oleh Bambang Juanda.
KORELASI & REGRESI.
Ekonometrika Lanjutan
STATISTIKA INFERENSI : UJI HIPOTESIS (SAMPEL TUNGGAL)
GRANGER CAUSALITY Sebenarnya Granger Causality adalah diadaptasi dari hubungan sebab akibat matematika dari Norbert Weiner ,1956 Prof.Clive Granger, 1960.
Oleh : St Nurhotimah & M. Wahyu Syaputra
Pemodelan Ekonometrika
Analisis Regresi Berganda
ANALISIS REGRESI BERGANDA
Program Studi Statistika, semester Ganjil 2012/2013
STATISTIKA INFERENSI : UJI HIPOTESIS (SAMPEL TUNGGAL)
EKONOMETRIKA PENGERTIAN.
Program Studi Statistika, semester Ganjil 2012/2013
Program Studi Statistika, semester Ganjil 2012/2013
Dampak Kebijakan Fiskal Terhadap Sektor Industri
Ekonomi Manajerial dalam Perekonomian Global
Uji Kausalitas Granger
(Guru Besar pada Fakultas Ekonomi dan Manajemen
Causality & Cointegration
REGRESI LINIER BERGANDA (MULTIPLE LINEAR REGRESSION)
Disampaikan Pada Kuliah : Ekonometrika Terapan Jurusan Ekonomi Syariah
Bab 4 : Estimasi Permintaan
Agribusiness Study of Programme Wiraraja University
Ekonomi Manajerial dalam Perekonomian Global
Analisis Regresi Berganda & Pengujian Asumsi OLS
Eviews PraktiK Regresi Ekonometrika / Al Muizzuddin F 2014.
ANALISA JALUR (PATH ANALYSIS)
ANALISIS REGRESI DAN KORELASI
Transcript presentasi:

(Guru Besar pada Fakultas Ekonomi dan Manajemen Institut Pertanian Bogor) Lektor pada Fakultas Ekonomi Universitas Jambi © Bambang Juanda & Junaidi: Ekonometrika Deret Waktu

Setelah mengikuti pembahasan bab ini pembaca diharapkan dapat: Menjelaskan pengertian & manfaat model Vector Autoregressive (VAR). Menjelaskan bentuk-bentuk model VAR. Mengetahui cara penentuan ordo model VAR. Mengetahui estimasi model VAR (p). Menjelaskan analisis VAR yang mencakup peramalan, IRF, FEDV) dan Uji Kausalitas Granger Menginterprestasikan output program Eviews pada model VAR © Bambang Juanda & Junaidi: Ekonometrika Deret Waktu

Pengantar Seringkali teori ekonomi belum mampu menentukan spesifikasi yang tepat untuk model, disebabkan: Teori ekonomi terlalu kompleks sehingga perlu dilakukan penyederhanaan dalam model Atau fenomena yang ada terlalu kompleks sehingga tidak cukup hanya dijelaskan dengan teori yang ada. Model Vector Autoregressive (VAR) menawarkan alternatif pemodelan sebagai solusinya Model VAR dibangun dgn pendekatan meminimalkan teori agar mampu menangkap fenomena ekonomi dgn baik. Model VAR disebut model non-struktural/tidak teoritis © Bambang Juanda & Junaidi: Ekonometrika Deret Waktu

Pengertian Model VAR Misalnya inflasi (INF) pada periode t dipengaruhi oleh suku bunga SBI pada waktu t dan suku bunga SBI pada t-1. (8.1) Disisi lain pergerakan INF akan mempengaruhi pergerakan SBI dimasa y.a.d. (8.2) Substitusi pers. 8.2 ke pers. 8.1: (8.3) Dalam bentuk sederhana: (8.4) © Bambang Juanda & Junaidi: Ekonometrika Deret Waktu

Pengertian Model VAR Substitusi pers. 8.1 ke pers. 8.2 (8.5) Secara sederhana bisa ditulis Dalam notasi matriks: (8.6) Sehingga bisa ditulis (8.7) © Bambang Juanda & Junaidi: Ekonometrika Deret Waktu

Data dalam model VAR haruslah data yg stasioner. Persamaan tsb disebut Vector Autoregresive berordo 1 dengan dua peubah (bivariate). Lazim ditulis VAR(1). Jika peubah sebanyak M, dengan observasi sebanyak T dan ordo p, maka model VAR (p) dapat ditulis sbb: A0 adalah vektor berukuran M x 1 dan matriks A1 (i = 1, 2, ...p) masing-masing berukuran M x M. Banyaknya parameter model yang harus diestimasi dari suatu model VAR (p) adalah M + M2p = M (1 + Mp). Data dalam model VAR haruslah data yg stasioner. © Bambang Juanda & Junaidi: Ekonometrika Deret Waktu

Bentuk-Bentuk Model VAR Unrestricted VAR. Terdapat dua bentuk: VAR in level . Jika data tidak stasioner pada level, harus distasionerkan dulu sebelum menggunakan model VAR. VAR in difference. jika data tidak stasioner dalam level dan tidak memiliki hubungan kointegrasi, estimasi VAR dilakukan pada data diferens. Restricted VAR atau disebut Vector Error Correction Model (VECM): bentuk VAR yang terestriksi. Restriksi diberikan karena data tidak stasioner namun terkointegrasi. Struktural VAR.Bentuk VAR direstriksi berdasarkan hubungan teoritis yg kuat dan skema ordering hubungan thdp peubah-peubah yang digunakan. S-VAR dikenal sebagai VAR yg teoritis (theoritical VAR) . © Bambang Juanda & Junaidi: Ekonometrika Deret Waktu

Estimasi Model VAR Model VAR merupakan sistem persamaan simultan Jika peubah bebas di semua persamaan sama, estimasi dapat dilakukan dgn metode OLS terhadap setiap persamaan. Jika peubah bebas berbeda antar persamaan, menjadi near VAR. Estimasi dgn metode SUR (Seemingly Unrelated Regression). Estimasi model VAR (p), penting menentukan lag atau p. Lag optimal dapat ditentukan dengan menggunakan beberapa kriteria, yaitu LR, AIC, SC, LR, FPE dan HQ. Kriteria pemilihan lag optimal adalah pada LR yang terbesar, atau pada AIC, SC, FPE dan HQ bernilai terkecil. Agar semua kriteria dapat dibandingkan untuk berbagai lag, banyaknya observasi yg digunakan setiap model VAR harus sama. © Bambang Juanda & Junaidi: Ekonometrika Deret Waktu

Analisis dalam Model VAR Analisis penting dalam model VAR: (1) peramalan; (2) impulse response; (3) forecast error decomposition variance dan (4) uji kausalitas. Peramalan Sblm peramalan:simulasi untuk mencocokkan data aktual dgn fited - nya Simulasi yang relevan digunakan dalam VAR adalah simulasi dinamis. Simulasi dinamis: gunakan semua persamaan VAR secara simultan Impulse Response Model VAR dapat digunakan untuk melihat dampak perubahan dari satu peubah terhadap peubah lainnya secara dinamis. Caranya dgn memberikan shocks pada salah satu peubah endogen. Shock yang diberikan biasanya sebesar satu standar deviasi dari peubah (disebut Innovations). Penelusuran pengaruh shock yang dialami oleh satu peubah terhadap nilai semua peubah saat ini dan beberapa periode mendatang disebut teknik Impulse Response Function (IRF). © Bambang Juanda & Junaidi: Ekonometrika Deret Waktu

Forecast Error Decomposition Variance (FEDV) Bertujuan memprediksi kontribusi persentase varian setiap peubah karena adanya perubahan peubah tertentu dalam sistem VAR Analisis FEDV digunakan untuk menggambarkan relatif pentingnya setiap peubah dalam sistem VAR karena adanya shock. Uji Kausalitas Pengujian untuk menentukan hubungan sebab akibat antara peubah dalam sistem VAR. Hubungan sebab akibat diuji dgn uji kausalitas Granger. © Bambang Juanda & Junaidi: Ekonometrika Deret Waktu

Prosedur Eviews untuk Pemodelan dan Analisis Tentukan lag maksimum: Dari menu utama Eviews: Quick > Estimate VAR VAR Type, pilih Unrestricted VAR. Endogenous Variables isikan peubah endogen. Dalam hal ini adalah diferensi pertama Misal INF dan SBI, sehingga ditulis d(INF) d(SBI). Lag Intervals for Endogenous, isikan terlebih dahulu lag terendah yaitu 1 (ditulis dengan cara 1 1). Exogenous Variables, isikan c (konstanta). Contoh output VAR © Bambang Juanda & Junaidi: Ekonometrika Deret Waktu

Contoh output Uji Kestabilan VAR Pengujian kestabilan model VAR Prosedurnya adalah: klik View > Lag Structure > AR Roots Table Jika sistem VAR stabil, pada bagian bawah outputnya akan muncul 2 kalimat berikut: No root lies outside the unit circle. VAR satisfies the stability condition. Jika sistem VAR tidak stabil, muncul peringatan sebagai berikut:  Warning: At least one root outside the unit circle. VAR does not satisfy the stability condition. Lakukan proses tersebut secara berulang, sehingga didapatkan lag maksimum yang dapat dihasilkan oleh sistem VAR yang stasioner. Contoh output Uji Kestabilan VAR © Bambang Juanda & Junaidi: Ekonometrika Deret Waktu

Estimasi sistem VAR berdasarkan masing-masing kandidat lag Tentukan Kandidat Lag Dari workfile: View > Lag structure > Lag length criteria. Pada Lags to include, masukan lag maksimum yang diperoleh. Klik OK. Pemilihan Lag Optimal Estimasi sistem VAR berdasarkan masing-masing kandidat lag Pilihlah sistem VAR dengan nilai Adj. R squared tertinggi sebagai sistem VAR dengan lag optimal. Uji kembali stabilitas sistem VAR mengikuti prosedur sebelumnya © Bambang Juanda & Junaidi: Ekonometrika Deret Waktu

Prosedur Eviews untuk Peramalan dengan VAR Perpanjang terlebih dahulu range sampel observasi Setelah mengestimasi sistem VAR, dari workfile klik Procs > Make Model, akan muncul tampilan berikut Klik Solve, akan muncul tampilan berikut: Hasil prediksi bagi setiap peubah dapat dilihat dalam workfile. Perhatikan daftar peubah pada gambar. Peubah prediksi dari sistem VAR diatas adalah peubah dengan akhiran 0. © Bambang Juanda & Junaidi: Ekonometrika Deret Waktu

Prosedur Eviews untuk Analisis Impulse Response Function (IRF) Berdasarkan model VAR, klik View > Impulse Response. Display Format :tentukan bentuk tampilan IRF, dalam bentuk tabel (Table), grafik terpisah (Multiple Graph) atau grafik digabung untuk semua peubah (Combined Graph) Response Standard Errors: pilih None jika tidak ingin menampilkan response standard Error. Pilih Analytic asymptotic atau Monte Carlo jika ingin menampilkan response standard error. Display Information : isikan peubah impulse dan response nya. Periods : isikan periode impulse response Contoh output Impulse Response © Bambang Juanda & Junaidi: Ekonometrika Deret Waktu

Prosedur Eviews untuk Analisis FEDV Berdasarkan model VAR, klik View > Variance Decomposition Display Format  & Response Standard Errors: sama seperti IRF Decomposition of: tergantung pada peubah yang dijadikan fokus penelitian. Periods: isikan periode untuk variance decomposition Factorization: tergantung pada bentuk sistem yang digunakan. VAR dan VECM menggunakan Cholesky, sedangkan S-VAR menggunakan structural decomposition. Contoh output Variance Decomposition © Bambang Juanda & Junaidi: Ekonometrika Deret Waktu

Prosedur Eviews untuk Uji Kausalitas Dari workfile: blok peubah yang akan diuji, seperti contoh berikut: Klik kanan pada salah satu peubah yang diblok, kemudian klik Open > as group. Akan muncul tampilan sebagai berikut: © Bambang Juanda & Junaidi: Ekonometrika Deret Waktu

Contoh output Granger Causality Test Klik View > Granger Causality. Kemudian pada pilihan Lags to include, isikan lag optimal sistem VAR yang telah diperoleh pada proses-proses sebelumnya Contoh output Granger Causality Test © Bambang Juanda & Junaidi: Ekonometrika Deret Waktu