KETIDAKPASTIAN PERTEMUAN 7.

Slides:



Advertisements
Presentasi serupa
Pemberian Alasan Yang Tidak Eksak
Advertisements

KETIDAKPASTIAN.
Certainty Factor (CF) Dr. Kusrini, M.Kom.
KONSEP DASAR PROBABILITAS
Pendugaan Parameter.
Team Teaching Faktor Kepastian.
KONSEP DASAR PROBABILITAS
Pendugaan Parameter.
Mengatasi Ketidakpastian (Uncertainty)
Metode Inferensi dan Penalaran
SISTEM PAKAR UNTUK MENDIAGNOSIS GANGGUAN JIWA SKIZOFRENIA MENGGUNAKAN METODE FUZZY EXPERT SYSTEM (STUDI KASUS RS. JIWA MENUR SURABAYA) Alfian Angga Pradika.
KETIDAKPASTIAN PERTEMUAN 14.
KONSEP DASAR PROBABILITAS
Pertemuan X “INFERENSI DENGAN KETIDAK PASTIAN”
Ketidakpastian Stmik-mdp, Palembang
FAKTOR KEPASTIAN (CERTAINTY FACTOR)
Team Teaching Ketidakpastian.
KETIDAKPASTIAN PERTEMUAN 6.
Kuliah Sistem Pakar “INFERENSI DENGAN KETIDAK PASTIAN”
KONSEP DASAR PROBABILITAS
Market Basket Analysis - #3
Pertemuan 11 “INFERENSI DENGAN KETIDAK PASTIAN”
KECERDASAN BUATAN (Artificial Intelligence) Materi 4
KETIDAKPASTIAN (UNCERTAINTY)
1 Pertemuan 10 Statistical Reasoning Matakuliah: T0264/Inteligensia Semu Tahun: Juli 2006 Versi: 2/1.
Teorema Bayes - #4 PAC175 (3 sks) DATA MINING Nurdin Bahtiar, S.Si, MT.
1 Pertemuan 7 Ketidakpastian dalam Rules Matakuliah: H0383/Sistem Berbasis Pengetahuan Tahun: 2005 Versi: 1/0.
KONSEP DASAR PROBABILITAS
Pertemuan 6 SISTEM PAKAR.
Probabilitas & Teorema Bayes
Teorema Bayes - #4 PAC175 (3 sks) DATA MINING Nurdin Bahtiar, S.Si, MT.
Faktor keTIDAKpastian (cf)
Teori PROBABILITAS.
KONSEP DASAR PROBABILITAS
Certainty Factors (CF) And Beliefs
Penanganan Ketidakpastian
Sistem Pakar Ketidakpastian
Materi Pasca UTS Pengantar Probabilitas (1 )
KONSEP DASAR PROBABILITAS
Teorema Bayes.
Teori PROBABILITAS.
KONSEP DASAR PROBABILITAS
KETIDAKPASTIAN PERTEMUAN 7.
Ketidakpastian & Kepastian (REASONING)
Fakultas Ilmu Komputer
Metode penanganan ketidakpastian dengan sistem pakar
INFERENSI DENGAN KETIDAKPASTIAN
Teori PROBABILITAS.
Pertemuan 7 KETIDAKPASTIAN
Penanganan Ketidakpastian
Faktor keTIDAKpastian (Uncertainty)
Pertemuan 5 Kecerdasan Buatan
Faktor Kepastian (Certainty)
Sistem Berbasis Pengetahuan
BAYES 17/9/2015 Kode MK : MK :.
SISTEM PAKAR DIAGNOSA KANKER SERVIKS MENGGUNAKAN METODE BAYES MUHAMAD ALFARISI ( ) MUHAMAD RALFI AKBAR ( ) ANDHIKA DWITAMA.
Pert 7 KETIDAKPASTIAN.
BAB XII PROBABILITAS (Aturan Dasar Probabilitas) (Pertemuan ke-27)
Pertemuan 6 SISTEM PAKAR.
CERTAINTY FACTOR DSS - Wiji Setiyaningsih, M.Kom.
Certainty Factor (CF) Dr. Kusrini, M.Kom.
PROBABILITAS BERSYARAT
KONSEP DASAR PROBABILITAS
Uncertainty Representation (Ketidakpastian).
KONSEP DASAR PROBABILITAS
Probabilitas & Teorema Bayes
KONSEP DASAR PROBABILITAS
Pertemuan 6 SISTEM PAKAR.
KONSEP DASAR PROBABILITAS
Kuliah Sistem Pakar Pertemuan VII “INFERENSI DENGAN KETIDAK PASTIAN”
Transcript presentasi:

KETIDAKPASTIAN PERTEMUAN 7

Ketidakpastian Ketidakpastian data - informasi atau data diperoleh tdk lengkap - tidak dapat dipercaya sepenuhnya - berasal dari berbagai sumber dan saling bertolak belakang - bahasa penyajiannya kurang tepat Ketidakpastian dlm proses inferensi, rule berdasarkan pengamatan pakar saja

Teorema Bayes Teorema Bayes adalah sebuah pendekatan untuk sebuah ketidaktentuan yang diukur dengan probabilitas. Teorema bayes dikemukakan oleh Thomas Bayes.

Teorema Bayes Dimana Probabilitas Bersyarat: P(x | h) Bentuk umum teorema Bayes: (evidence tunggal dan hipotesis tunggal) atau Dimana Probabilitas Bersyarat: P(x | h) menyatakan peluang munculnya x jika diketahui h. dan:

Berdasarkan hasil 100 angket yang dilakukan untuk mengetahui respon konsumen terhadap pasta gigi rasa jeruk (J) dan pasta gigi rasa strawbery (S), diperoleh informasi sebagai berikut : 20 pria menyukai rasa jeruk, 30 wanita menyukai rasa jeruk, 40 pria menyukai rasa strawbery, dan 10 wanita menyukai rasa strawbery. Apabila kita bertemu dengan seorang pria, berapa probabilitas ia menyukai pasta gigi rasa strawbery? Apabila kita bertemu dengan seorang wanita, berapa probabilitas ia menyukai pasta gigi rasa jeruk? Apabila kita bertemu dengan seorang yang menyukai pasta gigi rasa jeruk, berapa probabilitas ia adalah pria? Apabila kita bertemu dengan seorang yang menyukai pasta gigi rasa strawbery, berapa probabilitas ia adalah wanita?

Jawab: Responsen J S Jumlah R 20 40 60 W 30 10 50 100 Misal W = Wanita, R = Pria, S = pasta gigi rasa Strawbery, dan J = pasta gigi rasa jeruk. Jadi, Apabila kita bertemu dengan seorang pria, berapa probabilitas ia menyukai pasta gigi rasa strawbery adalah Apabila kita bertemu dengan seorang wanita, berapa probabilitas ia menyukai pasta gigi rasa jeruk adalah Apabila kita bertemu dengan seorang yang menyukai pasta gigi rasa jeruk, berapa probabilitas ia adalah pria adalah Apabila kita bertemu dengan seorang yang menyukai pasta gigi rasa strawbery, berapa probabilitas ia adalah wanita adalah

Teorema Bayes (Probabilitas Bersyarat) evidence tunggal dan hipotesis ganda) P(hi) * P(x| hi) P(hi | x) = P(x | h1) * P(h1) + .... + P(x | hn) * P(hn)

Teorema Bayes (Probabilitas Bersyarat) Contoh : Si Ani mengalami gejala ada bintik-bintik di wajahnya. Dokter menduga bahwa Si Ani terkena cacar dengan : Probabilitas munculnya bintik-bintik di wajah, jika Si Ani terkena cacar; p(Bintik2| Cacar) = 0.8 Probabilitas Si Ani terkena cacar tanpa memandang gejala apapun; p(Cacar) = 0.4 Probabilitas munculnya bintik-bintik di wajah, jika Si Ani alergi; p(Bintik2| Alergi) = 0.3 Probabilitas Si Ani terkena alergi tanpa memandang gejala apapun; p(Alergi) = 0.7 Probabilitas munculnya bintik-bintik di wajah, jika Si Ani jerawatan; p(Bintik2| Jerawatan) = 0.9 Probabilitas Si Ani jerawatan tanpa memandang gejala apapun; p(Jerawatan) = 0.5

Teorema Bayes (Probabilitas Bersyarat) Hitung Probabilitas Si Ani terkena cacar karena ada bintik-bintik di wajahnya P(Cacar|Bintik2) = p(Bintik2| Cacar)* p(Cacar) p(Bintik2|Cacar)*p(Cacar)+p(Bintik2|Alergi)*p(Alergi)+ p(Bintik2| Jerawatan)* p(Jerawatan) = (0.8 * 0.4) / ((0.8*0.4) + (0.3 * 0.7) + (0.9 * 0.5)) = 0.32 / 0.32 + 0.21 + 0.45 = 0.327

Teorema Bayes (Probabilitas Bersyarat) Hitung Probabilitas Si Ani terkena alergi karena ada bintik-bintik di wajahnya P(Alergi|Bintik2) = p(Bintik2| Alergi)* p(Alergi) p(Bintik2|Cacar)*p(Cacar)+p(Bintik2|Alergi)*p(Alergi)+ p(Bintik2| Jerawatan)* p(Jerawatan) = 0.214

Teorema Bayes (Probabilitas Bersyarat) Hitung Probabilitas Si Ani terkena jerawatan karena ada bintik-bintik di wajahnya P(Jerawat|Bintik2) = p(Bintik2| Jerawat)* p(Jerawat) p(Bintik2|Cacar)*p(Cacar)+p(Bintik2|Alergi)*p(Alergi)+ p(Bintik2| Jerawatan)* p(Jerawatan) = 0.459

Certainty Factors (CF) And Beliefs Meyatakan kepercayaan dalam suatu “event”  Taksiran Pakar Ukuran keyakinan pakar  fakta tertentu benar atau salah Perbedaan “nilai kepercayan” dengan “nilai ketidak percayaan

Certainty Factors And Beliefs (lanjutan) Cara mendapatkan tingkat keyakinan (CF) Metode “Net Belief” Certainty factors menyatakan belief dalam suatu event (atau fakta, atau hipotesis) didasarkan kepada evidence (atau expert’s assessment) CF = certainty factor MB[H,E] = measure of belief (ukuran kepercayaan) terhadap hipotesis H, jika diberikan evidence E(antara 0 dan 1) MD [H,E] = measure of disbelief (ukuran ketidakpercayaan) terhadap hipotesis H, jika diberikan evidence E (antara 0 dan 1) CF[Rule] = MB[H,E] - MD[H,E]

P(H)=1 lainnya P(H)=0 P(H) = probabilitas kebenaran hipotesis H P(H|E) = probabilitas bahwa H benar karena fakta E

Contoh 1: Si Ani menderita bintik-bintik di wajahnya. Dokter memperkirakan Si Ani terkena cacar dengan ukuran kepercayaan, MB[Cacar, Bintik2] = 0.8 dan MD[Cacar, Bintik2] = 0.01 CF[Cacar, Bintik2] = 0.80 - 0.01 = 0.79

Contoh 2 Seandainya seorang pakar penyakit mata menyatakan bahwa probalitas seseorang berpenyakit edeme palbera inflamator adalah 0,02. Dari data lapangan menunjukkan bahwa dari 100 orang penderita penyakit edeme palbera inflamator , 40 orang memiliki gejala peradangan mata. Dengan menganggap H = edeme palbera inflamator , hitung faktor kepastian bahwa edeme palbera inflamator disebabkan oleh adanya peradangan mata.

P(edeme palbera inflamator ) = 0 P(edeme palbera inflamator ) = 0.02 P (edeme palbera inflamator | peradangan mata) =40/100 = 0.4 MB(H|E) = max[0.4,0.02] – 0.02 1 – 0.02 = 0.4 -0.02 = 0.39 1-0.02 MD(H|E) = min [0.4 , 0.02] – 0.02 0 – 0,02 = 0.02 – 0.02 = 0 0 – 0.02 CF = 0.39 – 0 = 0.39 Rule : IF (Gejala = peradangan mata) THEN Penyakit = edeme palbera inflamator (CF = 0.39)

Wawancara seorang pakar Nilai CF (Rule) didapat dari interpretasi dari pakar yg diubah nilai CF tertentu. Pakar : Jika batuk dan panas, maka “hampir dipastikan” penyakitnya adalah influenza Rule : IF (batuk AND Panas) THEN penyakit = influenza (CF = 0.8) Uncertain Term CF Definitely not (pasti tidak) -1.0 Almost certainly not (hampir pasti tidak) -0.8 Probably not (kemungkinan besar tidak -0.6 Maybe not (mungkin tidak) -0.2 Unknow (tidak tahu) -0.2 sampai 0.2 Maybe (mungkin) 0.4 Probably(kemungkinan besar) 0.6 Almost certainly (hampir pasti) 0.8 Definitely (pasti) 1.0

Kombinasi beberapa Certainty Factors dalam Satu Rule Operator AND IF inflasi tinggi, CF = 50 %, (A), AND IF tingkat pengangguran kurang dari 7 %, CF = 70 %, (B), AND IF harga obligasi naik, CF = 100 %, (C) THEN harga saham naik CF[(A), (B), CF(C)] = Minimum [CF(A), CF(B), CF(C)] The CF for “harga saham naik” = 50 percent

Operator AND (lanjutan) Contoh 2 IF Saya punya uang lebih, CF = 0.7, (A), AND IF kondisi badan sehat, CF = 0.8, (B), AND IF tidak turun hujan, CF = 0.9, (C) THEN Saya akan pergi memancing CF untuk “Saya akan pergi memancing” = 0.7

Kombinasi beberapa Certainty Factors dalam Satu Rule (lanjutan) Operator OR Contoh 1 IF inflasi turun, CF = 70 %, (A), OR IF harga obligasi tinggi, CF = 85 %, (B) THEN harga saham akan tinggi Hanya 1(satu) IF untuk pernyataan ini dikatakan benar. Kesimpulan hanya 1(satu) CF dengan nilai maksimum CF (A or B) = Maximum [CF(A), CF(B)] The CF for “harga saham akan tinggi” = 85 percent

Kombinasi 2 (dua) atau lebih Rule Contoh : R1 : IF tingkat inflasi kurang dari 5 %, THEN harga saham di pasar naik(CF = 0.7) R2: IF tingkat pengangguran kurang dari 7 %, THEN harga saham di pasar naik (CF = 0.6) Efek kombinasi dihitung dengan menggunakan rumus : CF(R1,R2) = CF(R1) + CF(R2)[1 - CF(R1)]; or CF(R1,R2) = CF(R1) + CF(R2) - CF(R1)  CF(R2) Hitung kombinasi CF untuk dua rule di atas (0.88)

Jawab soal. CF(R1). =. 7. CF(R2). =. 6, CF(R1,R2) = 0. 7 + 0. 6(1 - 0 Jawab soal CF(R1) = 0.7 CF(R2) = 0.6, CF(R1,R2) = 0.7 + 0.6(1 - 0.7) = 0.7 + 0.6(0.3) = 0.88 Misalkan ada rule ke 3 yang merupakan rule baru, CF(R1,R2,R3) = CF(R1,R2) + CF(R3) [1 - CF(R1,R2)] R3 : IF harga obligasi meningkat, THEN harga saham naik(CF = 0.85) Hitung CF baru ? (0.982)

Referensi Sutojo, T., Mulyanto, E., Suhartono, V. (2011), “Kecerdasan Buatan”, Andi Yogyakarta Slide kuliah “Data Mining” Nurdin Bahtiar, S.Si, MT