Rumus BERNOULLI Rumus Bernoulli  memberikan hubungan antara elevasi, kecepatan dan tekanan suatu cairan Rumus ini juga memberikan ENERGI total dari suatu.

Slides:



Advertisements
Presentasi serupa
SENSOR ALIRAN Kelompok : TOEJOEH Oleh : Monna Rozana TK/30471 Sisca Dina NN TK/30487 Astuti Mahardika TK/30881 Dosen pengampu : Bapak Ir. Agus Arif ,M.T.
Advertisements

ALIRAN MELALUI LUBANG DAN PELUAP
Kuliah Hidraulika Wahyu Widiyanto
DINAMIKA FLUIDA FISIKA SMK N 2 KOTA JAMBI.
FLUIDA BERGERAK ALIRAN FLUIDA.
Mekanika Fluida II Jurusan Teknik Mesin FT. UNIMUS Julian Alfijar, ST
FLUIDA DINAMIS j.
Mekanika Fluida Membahas :
Berkelas.
Bab 1: Fluida Massa Jenis Tekanan pada Fluida
Matakuliah : K0614 / FISIKA Tahun : 2006
8. FISIKA FLUIDA Materi Kuliah: Tegangan Permukaan Fluida Mengalir
RIZKI ARRAHMAN KELAS C. ALIRAN FLUIDA DALAM PIPA  Sistem perpipaan adalah suatu sistem yang banyak digunakan untuk memindahkan fluida, baik.
Kuliah Mekanika Fluida
Mekanika Fluida – Fani Yayuk Supomo, ST., MT
Kuliah MEKANIKA FLUIDA
PERSAMAAN ENERGI UMUM Persamaan Bernoulli : tinggi [Energi/berat]
Selamat Belajar… Bersama Media Inovasi Mandiri Semoga Sukses !!
Dinamika Fluida Disusun oleh : Gading Pratomo ( )
Fluida TIM FISIKA UHAMKA 2012
FISIKA FLUIDA yusronsugiarto.lecture.ub.ac.id
FLUIDA.
Mekanika Fluida Jurusan Teknik Sipil Pertemuan: 4.
rigid dapat mengalir dapat mengalir
Fulida Ideal : Syarat fluida dikatakan ideal: 1. Tidak kompresibel 2
Hidrostatika Hidrostatika adalah ilmu yang mempelajari fluida yang tidak bergerak. Fluida ialah zat yang dapat mengalir. Seperti zat cair dan gas. Tekanan.
Nikmah MAN Model Palangka Raya
Soal Latihan No. 1 Bila tekanan pada tangki tertutup adalah 140 kPa di atas tekanan atmosfir dan head loss akibat kehilangan energi yang terjadi pada.
FLUIDA STATIS DAN DINAMIS
FLUIDA DINAMIS Oleh: STAVINI BELIA
Mempelajari gerak partikel zat cair pada setiap titik medan aliran di setiap saat, tanpa meninjau gaya yang menyebabkan gerak aliran di setiap saat, tanpa.
Ir. Mochamad Dady Ma‘mun M.Eng, Phd
Ir. Mochamad Dady Ma‘mun M.Eng, Phd
Ir. Mochamad Dady Ma‘mun M.Eng, Phd
Konsep Aliran Zat Cair Melalui (Dalam) Pipa
ALIRAN MELALUI LUBANG DAN PELUAP
DINAMIKA FLUIDA.
Ir. Mochamad Dady Ma‘mun M.Eng, Phd
ALIRAN INVISCID DAN INCOMPRESSIBLE, PERSAMAAN MOMENTUM, PERSAMAAN EULER DAN PERSAMAAN BERNOULLI Dosen: Novi Indah Riani, S.Pd., MT.
BAB FLUIDA.
MEKANIKA ZAT PADAT DAN FLUIDA
ALIRAN FLUIDA Persamaan Continuitas (untuk aliran fluida) 1 2
Ir. Mochamad Dady Ma‘mun M.Eng, Phd
PERTEMUAN 7 FLUIDA.
DINAMIKA FLUIDA.
Prof.Dr.Ir. Bambang Suharto, MS
Kuliah Mekanika Fluida
Saluran Terbuka dan Sifat-sifatnya
DINAMIKA FLUIDA FISIKA SMK PERGURUAN CIKINI.
Rumus BERNOULLI Rumus Bernoulli  memberikan hubungan antara elevasi, kecepatan dan tekanan suatu cairan Rumus ini juga memberikan ENERGI total dari suatu.
MEKANIKA ZALIR (FLUIDA)
MEKANIKA FLUIDA FLUIDA SMA NEGERI 1 GLENMORE Tekanan Hidrostatis CAIR
Fakultas Teknologi Pertanian Universitas Brawijaya
Kuliah MEKANIKA FLUIDA
MEKANIKA ZALIR (FLUIDA)
Fluida : Zat yang dapat mengalir
FLUIDA DINAMIS j.
DINAMIKA FLUIDA.
PERTEMUAN 1.
FISIKA FLUIDA STATIS & FLUIDA DINAMIS BERANDA FLUIDA STATIS DINAMIS
PERTEMUAN 6 FLUIDA.
BAHAN AJAR FISIKA FLUIDA DINAMIS
PENGANTAR TEKNOLOGI INFORMASI
Rumus BERNOULLI Rumus Bernoulli  memberikan hubungan antara elevasi, kecepatan dan tekanan suatu cairan Rumus ini juga memberikan ENERGI total dari suatu.
Fluida adalah zat yang dapat mengalir Contoh : udara, air,minyak dll
IMPULS - MOMENTUM GAYA IMPULS. Suatu benda jika mendapat gaya sbesar F, maka pada benda akan terjadi perubahan kecepatan. Apakah gaya F bekerja dalam waktu.
FLUIDA DINAMIS Rado Puji Wibowo (15/380118/PA/16720) Aldida Safia Ruzis (16/394055/PA/17146)
Menik Dwi Kurniatie, S.Si., M.Biotech. Universitas Dian Nuswantoro
Alfandy Maulana Yulizar Materi Kuliah: - Tegangan Permukaan - Fluida Mengalir - Kontinuitas - Persamaan Bernouli - Viskositas.
1. Aliran bersifat steady/tunak(tetap) FLUIDA FLUIDA IDEAL FLUIDA SEJATI 2. Nonviscous (tidak kental) 2. Viscous (kental) 1. alirannya turbulen 3. Incompresibel.
Transcript presentasi:

Rumus BERNOULLI Rumus Bernoulli  memberikan hubungan antara elevasi, kecepatan dan tekanan suatu cairan Rumus ini juga memberikan ENERGI total dari suatu aliran  sehingga dapat bergerak. Bila suatu fluida bergerak maka perlu memasukkan faktor tambahan. Faktor tambahan ini disebabkan oleh timbulnya energi yang disebabkan oleh kecepatan gerak dari fluida tersebut  Energi tersebut diperlukan agar fluida tersebut tetap bergerak. Energi tersebut dinamakan Beda Tinggi akibat Kecepatan GERAK (VELOCITY HEAD) = V2 2g Dimana : V = Kecepatan Fluida (m det-1) g = Kons. Gravitasi (9,81 m det-2)

Energi Total (E) = H + z + V2 2g ENERGI total suatu fluida yang bergerak merupakan jumlah dari beda tinggi statis, beda tinggi elevasi dan beda tinggi karena kecepatan gerak. Energi Total (E) = H + z + V2 2g Apabila suatu benda bergerak dari A ke B  maka lintasan AB disebut S  sehingga kecepatan pada tiap-tiap titik adalah differensial S ke t  ds = instantanius velocity dt Kalau keseluruhan : V = S S = jarak T T = waktu B S A

Instantanius velocity = V = ds/dt a = perubahan kecepatan / satuan waktu ds a = dv = d dt dt = d2S (dT)2 a = dv  = dv . ds dT dT ds a = dv . ds ds dt  a = V . dv

dm = .d (vol) = .dA.ds w = .g.dA.ds Datum plane dw=.g.dA.ds Z1 Z2  V dz ds dA +dp  T dm = .d (vol) = .dA.ds w = .g.dA.ds w = - .g.dA.ds.dz = - .g.dA.dz ds

Gaya-gaya yang ada : F1 = .dA F2 = - ( + dp).dA F3 = - .g.dA.dz dFtot = - dp.dA - .g.dA.dz dm = .dA.ds a = V.dv ds Karena  F = m.a  - dp.dA - .g.dA.dz = .dA.ds.V.dv - dp.dA - .g.dA.dz = .dA.V.dv .dA.V.dv + dp.dA + .g.dA.dz = 0 : .d A

V.dv + dp + g.dz = 0  dv2 + dp + g.dz = 0  : g V2 = dv2 = 2 V.dv 2  V.dv = d.V2 dv2 + dp + dz = 0 2 2g .g d V2 + dp + dz = 0 R. EULER 2g  Untuk fluida incompressible  berarti murni, maka  uniform p (sama dimana-mana)   = constant 

maka persamaan dapat ditulis d p  d V2 + d p + dz = 0 2g  d V2 + p + z = 0 2g  Rumus tersebut di atas oleh EULER diintegralkan dari satu titik ke titik lain (dari titik 1 ke titik 2)

H = Constant  dsb Total Head R. BERNOULLI V12 = Velocity Head 2g p1 = Pressure Head  Z1 = Potential Head H = Constant  dsb Total Head

KEHILANGAN OLEH GESEKAN Fluida yang mengalir memerlukan energi untuk mengatasi gaya geser di dalam fluida itu sendiri  akibatnya akan terjadi konversi energi yang berubah menjadi panas dan bagian ini akan hilang dari system. ENERGI yang hilang tersebut disebut sebagai Beda Tinggi Gesekan atau Tekanan Gesekan. Kehilanganenergi tersebut menjadi sangat penting apabila udara atau air mengalir di dalam pipa atau saluran terbuka. Untuk mengalirkan fluida melalui pipa serta untuk mengatasi kehilangan oleh gesekan akan diperlukan tekanan yang cukup tinggi.

Kehilangan Gesekan di dalam Pipa EX EB Kehilangan Gesekan di dalam Pipa Perbedaan energi total antara titik A dan B sama dengan Enegri Hilang oleh akibat gesekan. Kehilangan akibat gesekan : Hf = EA – EB Antara titik A dan B

GRADIEN HIDROLIS Tekanan atau energi suatu fluida secara grafis dapat digambarkan suatu aliran dalam pipa. Gambar grafis jumlah beda tinggi elevasi dan tekanan dari fluida dinamakan Gradien Hidrolis. h1 h2 Z1 Garis Gradien Lurus Datum Plane Pengurangan beda tinggi akibat gesekan Gradien Hidrolis di sepanjang aliran menunjukkan tekanan fluida atau energi fluida untuk setiap titik di sepanjang pipa aliran

PENGUKURAN ALIRAN FLUIDA Ada dua cara utama dari aliran fluida yaitu Aliran Tebruka dan Aliran Tertutup (dalam pipa). Aliran dalam Pipa : alat yang dipergunakan dalam pengukuran : Pengukuran Massa volume Meter aliran berdasarkan beda Tekanan Tabung Pitot Meter aliran dengan penampang yang dapat diubah-ubah Current Meter Pengukuran volume dan massa dapat dilakukan berdasarkan waktu yang diperlukan untuk mengisi tangki yang volumenya telah diketahui atau menimbang berat yang dialirkan untuk suatu waktu tertentu.

Meter Aliran Berdasarkan Beda Tekanan Alatnya  VENTURI METER Syarat : Ukuran mulut dan ujungnya sama dengan ukuran pipa yang debitnya sedang diukur. Sudut bagian konvergen biasanya 21o. Panjang Tenggorokan = diameternya. Sudut bagian divergennya biasanya = 5 – 7o  agar kehilangan energi sekecil mungkin Bernoulli = Z1 + P1 + V12 = Z2 + P2 + V22 (ideal)  2g  2g + H2 (tak ideal) b. Kontinuitas = Q = A1V1 = A2V2 = AnVn

Tenggorokan Bagian Mulut Bagian Konvergen Bagian Divergen 21o 5-7o x (2) P2 V2 A2 (1) P1 V1 A1

1. Persamaan Bernoulli untuk Penampang 1 dan 2 V12 + P1 + Z1 = V22 + P2 + Z2 2g  2g  (Z1 – Z2) + P1 – P2 = V22 – V12  2g Persamaan Kontinuitas Q = A1V1 = A2V2 V1 = A2V2 A1 V12 = A2 2 V22

Masuk Persamaan Bernoulli :  diket Tek. Statis

Aliran sebenarnya dapat diketahui dari percepatan  CV dapat dicari. Karena Q1 > Q2  maka diberi CV Sehingga besarnya aliran (Q)  sebenarnya :

TABUNG PITOT V PA d h V0 P0 B Tek. Stagnasi Tek. Statis Bila kecepatan air di A=V, maka pada titik B yaitu pada mulut Pitot tube  kecepatan pada suatu bagian Elementer cairan = 0  sehingga Pada titik A

Dari rumus di atas, maka : Pada titik B (Tek. B)  menyebabkan cairan naik setinggi h  sehingga P0 = h + d  Dari rumus di atas, maka : atau

Tabung Pitot dapat dipergunakan untuk : Tekanan statis Menentukan arah aliran Tekanan stagnasi METER aliran dengan Penampang yang dapat berubah. Suatu piringan atau benda diletakkan di dalam pipa dengan bentuk bagian dalam seperti kerucut. Apabila fluida mengalir ke atas, aliran ini mempunyai tenaga untuk mengangkat piringan atau benda tadi, dimana tinggi pengangkatan sebanding dengan kecepatan Aliran Fluida. Prinsip dasar dari alat pengukur ini adalah bahwa jumlah volume aliran sebanding dengan luas / aliran fluida (lebar lubang).

ORIFICE : Lubang aliran yang dapat diatur skala Piringan / Pengapung A h B C P Vena Kontrakta

Sebuah lubang (orifice) biasanya dibuat didasar atau pada dinding tangki, pada umumnya berbentuk bundar  debit air tergantung pada tinggi permukaan dalam tangki. Pada titik A di permukaan air, PA = 1 atm; VA = 0  bila luas tangki besar sekali =  Pada titik B  VB (kecepatan aliran) PB = 1 atm  PA = PB

Rumus Bernoulli  Datum Plane pada titik B (H. Torricelli)

Debit aliran teoritis melalui lubang (orifice) = Luas lubang x kecepatan Bila A = Luas pancaran di C  Q = A 2gh Pada keadaan sebenarnya debit aliran lebih kecil daripada Debit Teoritis sebab kecepatan pancaranlebih kecil karena tahanan gesekan. Kecep. sebenarnya = V1 = CV x V = CV2gh CV = Koef. Kecepatan Terlihat bahwa jalannya air mengecil atau konvergen pada lubang aliran  luas pancaran air lebih kecil daripada lubangnya.

Pada lubang yang berhimpit dengan lubang tangki bagian-bagian air bergerak ke arah puatnya sehingga titik C tekanannya > dari tekanan atm. Pada titik B sedikit luar lubang maka garis arus menjadi sejajar  penampang melalui titik B disebut VENA CONTRACTA.  Luas pancaran air sebenarnya : A1 = CC x A CC = Koefisien Kontraksi Jadi debit air sebenarnya = luas sebenarnya x Kecepatan sebenarnya = CC A x CV2gh Apabila CC x CV = Cd = Koefisien Pengaliran  Q = Cd A2gh