Knowledge Management: 4. Systems

Slides:



Advertisements
Presentasi serupa
Peran Utama Data Mining
Advertisements

DATA MINING 1.
MANAJEMEN PENGETAHUAN
Robert Groth, “Data Mining: Building Competitive Advantage”, chap 2
Algoritma Data Mining Object-Oriented Programming Algoritma Data Mining
1 Pertemuan 1 Introduction Matakuliah: sistem Operasi Tahun: 2010.
Pertemuan XIV FUNGSI MAYOR Assosiation. What Is Association Mining? Association rule mining: –Finding frequent patterns, associations, correlations, or.
Presented By : Group 2. A solution of an equation in two variables of the form. Ax + By = C and Ax + By + C = 0 A and B are not both zero, is an ordered.
Bina Nusantara Model Simulasi Peretemuan 23 (Off Clas) Mata kuliah: K0194-Pemodelan Matematika Terapan Tahun: 2008.
Data Mining: Klasifikasi dan Prediksi Naive Bayesian & Bayesian Network . April 13, 2017.
1 Pertemuan 09 Kebutuhan Sistem Matakuliah: T0234 / Sistem Informasi Geografis Tahun: 2005 Versi: 01/revisi 1.
1 Pertemuan 12 Pengkodean & Implementasi Matakuliah: T0234 / Sistem Informasi Geografis Tahun: 2005 Versi: 01/revisi 1.
Pendugaan Parameter Proporsi dan Varians (Ragam) Pertemuan 14 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
PENDUGAAN PARAMETER Pertemuan 7
Pertemuan XIV FUNGSI MAYOR Assosiation. What Is Association Mining? Association rule mining: –Finding frequent patterns, associations, correlations, or.
Data Mining: 7. Algoritma Estimasi
Data Mining Romi Satria Wahono WA/SMS:
4- Classification: Logistic Regression 9 September 2015 Intro to Logistic Regression.
9.3 Geometric Sequences and Series. Objective To find specified terms and the common ratio in a geometric sequence. To find the partial sum of a geometric.
HUMAN CAPITAL CHALLENGES ABI SUJAK DIRECTOR SEAMOLEC SEMINAR INTERNASIONAL GEDUNG SERBA GUNA UT FEBRUARI 2016.
Data Mining Romi Satria Wahono WA/SMS:
A rsitektur dan M odel D ata M ining. Arsitektur Data Mining.
Knowledge Management Romi Satria Wahono WA/SMS:
DATA MINING (Machine Learning)
Course Outline 1. Pengantar Data Mining 2. Proses Data Mining
Data mining ABU SALAM, M.KOM.
EIS (Executive Information Systems)
2. Data & Proses Datamining
Data Mining Junta Zeniarja, M.Kom, M.CS
Data Mining Junta Zeniarja, M.Kom, M.CS
Pert. 16. Menyimak lingkungan IS/IT saat ini
Notasi Object Oriented System
Being Researcher-Technopreneur
DATAWAREHOUSING & BUSINESS INTELLIGENT <<Pertemuan – 12>>
Peran Utama Data Mining
Algoritma C4.5. Algoritma C4.5 Object-Oriented Programming Introduction Algoritma C4.5 merupakan algoritma yang digunakan.
Data Mining Junta Zeniarja, M.Kom, M.CS
Data Mining.
Decision Tree Classification.
Decision Tree Classification.
Disiplin Ilmu, Metode Penelitian, Computing Method
4. Disiplin Ilmu, Metode Penelitian dan Computing Methods
Data Mining.
Konsep Data Mining Ana Kurniawati.
Data Mining Yohana Nugraheni, S.Kom, MT
Clustering Best Practice
Disiplin Ilmu, Metode Penelitian, Computing Method
PENDUGAAN PARAMETER Pertemuan 8
Pohon Keputusan (Decision Trees)
EIS (Executive Information Systems)
Oleh : Rahmat Robi Waliyansyah, M.Kom.
Manajemen Proyek Perangkat Lunak (MPPL)
MIK | FAKULTAS ILMU-ILMU KESEHATAN
Metode Data Mining “ Self-Organizing Map [SOM] ” Taskum Setiadi ADVANCE MACHINE LEARNING STMIK Nusa Mandiri Jakarta2016 ADVANCE MACHINE LEARNING.
Pertemuan 21 dan 22 Analisis Regresi dan Korelasi Sederhana
KLASIFIKASI.
Object-Oriented Programming Data Mining Romi Satria Wahono
Evidence-Based Medicine Prof. Carl Heneghan Director CEBM University of Oxford.
Data Mining: Klasifikasi dan Prediksi Naive Bayesian & Bayesian Network . November 8, 2018.
Konsep Aplikasi Data Mining
Konsep Aplikasi Data Mining
Factors Influencing Knowledge Management
Machine Learning Introduction
Konsep Data Mining Ana Kurniawati.
In this article, you can learn about how to synchronize AOL Mail with third-party applications like Gmail, Outlook, and Window Live Mail, Thunderbird.
Konsep dan Aplikasi Data Mining
DATA MINING 01 Introduction
Konsep Aplikasi Data Mining
Data Mining Classification.
Universitas Gunadarma
Transcript presentasi:

Knowledge Management: 4. Systems romi@romisatriawahono.net Knowledge Management: 4. Systems Romi Satria Wahono romi@romisatriawahono.net http://romisatriawahono.net/km WA/SMS: +6281586220090 http://romisatriawahono.net

Romi Satria Wahono SD Sompok Semarang (1987) SMPN 8 Semarang (1990) SMA Taruna Nusantara Magelang (1993) B.Eng, M.Eng and Ph.D in Software Engineering from Saitama University Japan (1994-2004) Universiti Teknikal Malaysia Melaka (2014) Research Interests: Software Engineering and Machine Learning Founder dan Koordinator IlmuKomputer.Com Peneliti LIPI (2004-2007) Founder dan CEO PT Brainmatics Cipta Informatika

Contents 1. Introduction 1.1 What and Why Knowledge Management http://romisatriawahono.net Contents 1. Introduction 1.1 What and Why Knowledge Management 1.2 Types of Knowledge 1.3 Knowledge Transformation 2. Foundations 2.1 Knowledge Management Infrastructure 2.2 Knowledge Management Mechanism 2.3 Knowledge Management Technologies 3. Solutions 3.1 Knowledge Management Processes 3.2 Knowledge Management Systems 4. Systems 4.1 Knowledge Application Systems 4.2 Knowledge Capture Systems 4.3 Knowledge Sharing Systems 4.4 Knowledge Discovery Systems 5. Assessment 5.1 Organizational Impacts of Knowledge Management 5.2 Type of Knowledge Management Assessment romi@romisatriawahono.net

4. Systems 4.1 Knowledge Application Systems 4.2 Knowledge Capture Systems 4.3 Knowledge Sharing Systems 4.4 Knowledge Discovery Systems

4.1 Knowledge Application Systems Systems that Utilized Knowledge

Systems that Utilized Knowledge Knowledge application systems support the process through which individuals utilize the knowledge possessed by other individuals without actually acquiring, or learning, that knowledge Both mechanisms and technologies can support knowledge application systems by facilitating the knowledge management processes of routines and direction Knowledge application systems are typically enabled by intelligent technologies

KM Processes

4.2 Knowledge Capture Systems Systems that Preserve and Formalize Knowledge

Systems that Preserve and Formalize Knowledge Knowledge capture systems are designed to help elicit and store knowledge, both tacit and explicit Knowledge can be captured using mechanisms or technologies so that the captured knowledge can then be shared and used by others Storytelling is the mechanism by which early civilizations passed on their values and their wisdom from one generation to the next One type of knowledge capture system that we describe in this chapter is based on the use of mind map as a knowledge modeling/visualization tool

KM Processes

4.3 Knowledge Sharing Systems Systems that Organize and Distribute Knowledge

Knowledge Sharing Systems Knowledge sharing systems can be described as systems that enable members of an organization to acquire tacit and explicit knowledge from each other In a knowledge sharing system, knowledge owners will: Want to share their knowledge with a controllable and trusted group Decide when to share and the conditions for sharing Seek a fair exchange, or reward, for sharing their knowledge

Type of Knowledge Sharing Systems Incident report databases Alert systems Best practices databases Lessons learned systems Expertise locator systems

KM Processes

4.4 Knowledge Discovery Systems Systems that Create Knowledge

Knowledge Discovery Systems The technologies that enable the discovery of new knowledge uncover the relationships from explicit information Knowledge discovery technologies can be very powerful for organizations wishing to obtain an advantage over their competition Recall that knowledge discovery in databases (KDD) or Data Mining is the process of finding and interpreting patterns from data, involving the application of algorithms to interpret the patterns generated by these algorithms (Fayyad et al. 1996)

Data Mining Data mining systems have made a significant contribution in scientific fields for years, for example in breast cancer diagnosis (Kovalerchuk et al. 2000) Perhaps the recent proliferation of e-commerce applications providing reams of hard data ready for analysis presents us with an excellent opportunity to make profitable use of these techniques.

KM Processes

Peran Utama Data Mining romi@romisatriawahono.net Object-Oriented Programming Peran Utama Data Mining 1. Estimasi 2. Prediksi 3. Klasifikasi 4. Klastering 5. Asosiasi http://romisatriawahono.net

Dataset (Himpunan Data) romi@romisatriawahono.net Object-Oriented Programming Dataset (Himpunan Data) Attribute/Feature Class/Label/Target Record/ Object/ Sample/ Tuple Nominal Numerik http://romisatriawahono.net

Jenis Atribut

Tipe Data Jenis Atribut Deskripsi Contoh Operasi Ratio (Mutlak) Data yang diperoleh dengan cara pengukuran, dimana jarak dua titik pada skala sudah diketahui Mempunyai titik nol yang absolut (*, /) Umur Berat badan Tinggi badan Jumlah uang geometric mean, harmonic mean, percent variation Interval (Jarak) Tidak mempunyai titik nol yang absolut (+, - ) Suhu 0°c-100°c, Umur 20-30 tahun mean, standard deviation, Pearson's correlation, t and F tests Ordinal (Peringkat) Data yang diperoleh dengan cara kategorisasi atau klasifikasi Tetapi diantara data tersebut terdapat hubungan atau berurutan (<, >) Tingkat kepuasan pelanggan (puas, sedang, tidak puas) median, percentiles, rank correlation, run tests, sign tests Nominal (Label) Menunjukkan beberapa object yang berbeda (=, ) Kode pos Jenis kelamin Nomer id karyawan Nama kota mode, entropy, contingency correlation, 2 test Tipe Data

1. Estimasi Waktu Pengiriman Pizza romi@romisatriawahono.net Object-Oriented Programming 1. Estimasi Waktu Pengiriman Pizza Customer Jumlah Pesanan (P) Jumlah Traffic Light (TL) Jarak (J) Waktu Tempuh (T) 1 3 16 2 7 4 20 6 18 8 36 ... 1000 12 Label Pembelajaran dengan Metode Estimasi (Regresi Linier) Waktu Tempuh (T) = 0.48P + 0.23TL + 0.5J Pengetahuan http://romisatriawahono.net

Contoh: Estimasi Performansi CPU romi@romisatriawahono.net Object-Oriented Programming Contoh: Estimasi Performansi CPU Example: 209 different computer configurations Linear regression function PRP = -55.9 + 0.0489 MYCT + 0.0153 MMIN + 0.0056 MMAX + 0.6410 CACH - 0.2700 CHMIN + 1.480 CHMAX 32 128 CHMAX 8 16 CHMIN Channels Performance Cache (Kb) Main memory (Kb) Cycle time (ns) 45 4000 1000 480 209 67 8000 512 208 … 269 32000 29 2 198 256 6000 125 1 PRP CACH MMAX MMIN MYCT http://romisatriawahono.net

Output/Pola/Model/Knowledge Formula/Function (Rumus atau Fungsi Regresi) WAKTU TEMPUH = 0.48 + 0.6 JARAK + 0.34 LAMPU + 0.2 PESANAN Decision Tree (Pohon Keputusan) Rule (Aturan) IF ips3=2.8 THEN lulustepatwaktu Cluster (Klaster)

romi@romisatriawahono.net Object-Oriented Programming 2. Prediksi Harga Saham Label Dataset harga saham dalam bentuk time series (rentet waktu) Pembelajaran dengan Metode Prediksi (Neural Network) http://romisatriawahono.net

Pengetahuan berupa Rumus Neural Network Prediction Plot

3. Klasifikasi Kelulusan Mahasiswa romi@romisatriawahono.net Object-Oriented Programming 3. Klasifikasi Kelulusan Mahasiswa Label NIM Gender Nilai UN Asal Sekolah IPS1 IPS2 IPS3 IPS 4 ... Lulus Tepat Waktu 10001 L 28 SMAN 2 3.3 3.6 2.89 2.9 Ya 10002 P 27 SMA DK 4.0 3.2 3.8 3.7 Tidak 10003 24 SMAN 1 2.7 3.4 3.5 10004 26.4 SMAN 3 11000 23.4 SMAN 5 2.8 3.1 Pembelajaran dengan Metode Klasifikasi (C4.5) http://romisatriawahono.net

Pengetahuan Berupa Pohon Keputusan romi@romisatriawahono.net Object-Oriented Programming Pengetahuan Berupa Pohon Keputusan http://romisatriawahono.net

Contoh: Rekomendasi Main Golf romi@romisatriawahono.net Object-Oriented Programming Contoh: Rekomendasi Main Golf Input: Output (Rules): If outlook = sunny and humidity = high then play = no If outlook = rainy and windy = true then play = no If outlook = overcast then play = yes If humidity = normal then play = yes If none of the above then play = yes http://romisatriawahono.net

Contoh: Rekomendasi Main Golf Output (Tree):

Contoh: Rekomendasi Contact Lens romi@romisatriawahono.net Object-Oriented Programming Contoh: Rekomendasi Contact Lens Input: http://romisatriawahono.net

Contoh: Rekomendasi Contact Lens romi@romisatriawahono.net Object-Oriented Programming Contoh: Rekomendasi Contact Lens Output/Model (Tree): http://romisatriawahono.net

4. Klastering Bunga Iris Dataset Tanpa Label Pembelajaran dengan romi@romisatriawahono.net Object-Oriented Programming 4. Klastering Bunga Iris Dataset Tanpa Label Pembelajaran dengan Metode Klastering (K-Means) http://romisatriawahono.net

Pengetahuan Berupa Klaster romi@romisatriawahono.net Object-Oriented Programming Pengetahuan Berupa Klaster http://romisatriawahono.net

5. Aturan Asosiasi Pembelian Barang romi@romisatriawahono.net Object-Oriented Programming 5. Aturan Asosiasi Pembelian Barang Pembelajaran dengan Metode Asosiasi (FP-Growth) http://romisatriawahono.net

Pengetahuan Berupa Aturan Asosiasi romi@romisatriawahono.net Object-Oriented Programming Pengetahuan Berupa Aturan Asosiasi http://romisatriawahono.net

Algoritma Data Mining (DM) romi@romisatriawahono.net Object-Oriented Programming Algoritma Data Mining (DM) Estimation (Estimasi): Linear Regression, Neural Network, Support Vector Machine, etc Prediction/Forecasting (Prediksi/Peramalan): Classification (Klasifikasi): Naive Bayes, K-Nearest Neighbor, Decision Tree (C4.5, ID3, CART), Linear Discriminant Analysis, Logistic Regression, etc Clustering (Klastering): K-Means, K-Medoids, Self-Organizing Map (SOM), Fuzzy C-Means, etc Association (Asosiasi): FP-Growth, A Priori, Coefficient of Correlation, Chi Square, etc http://romisatriawahono.net

Referensi Peter Drucker, The age of social transformation, The Atlantic Monthly, 274(5), 1994 Ikujiro Nonaka and Hirotaka Takeuchi, The Knowledge Creating Company, Oxford University Press, 1995 Kimiz Dalkir and Jay Liebowitz, Knowledge Management in Theory and Practice, The MIT Press, 2011 Irma Becerra-Fernandez and Rajiv Sabherwal, Knowledge Management: Systems and Processes, M.E. Sharpe, Inc., 2010 Romi Satria Wahono, Menghidupkan Pengetahuan Sudahkah Kita Lakukan?, Jurnal Dokumentasi dan Informasi - Baca, LIPI, 2005