Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
Diterbitkan olehRatna Hermanto Telah diubah "8 tahun yang lalu
1
Suharmadi Sanjaya - Matematika ITS
2
BACKGROUND A Good course has a clear purpose: Applied Mathematics is alive and very vigorous Teaching of Apllied Mathematics need a fresh approach It must provide a frame work into which the applications will fit The central topics are : Differential Equations & Matrix Equations The Continous and Discrete
3
They reinforce each other because they go in paralel, one side is Calculus ; on the other is Algebra To see the cooperation between Calculus & Linear Algebra is to see one of the best parts of modern Applied Mathematics Background
4
The right approach is not to model a few isolated examples, but, the more important goal is to find ideas that are shared by a wide range of applications The contribution is to recognize and explain the underlying pattern It aims to explain what is essential as far as posible
5
Background Emphasis must go to Equilibrium equations ( Boundary Value problems (BVP ) ) & Dynamics Equations ( Initial Value Problems (IVP) ) Supported Subjects : Applied Analysis Mathematical Modelling & Optimization Scientific Computation ( Computer can do, without being dominated by it )
6
Dynamics & Equilibrium Discrete & Continous Calculus & Aljabar Matrix & Differential Equation System Ax = b 2 nd- Order Differential Equation One Variable Partial Differential Equations Two Point BVP Initial Value Problems BVP – Eliptic Laplace Poisson Mixed BVP & IVP Parabolics & Hyperbolics Establish Gaussian Elimination Matrix Factorization Technique Underlying Geometri Recognize The associated Minimum Principle Matrix PD Presentasi
7
Kompetensi Kompetensi Utama: Mampu mengkonstruksi model matematika pada masalah diskrit & kontinyu (masalah Equilibrium & Dynamics ) serta melakukan simulasi model tersebut. Kompetensi pendukung: Memahami konsep pemodelan matematika & simulasi Kompetensi Lainnya Menguasai tehnik pemrogaman (m file & GUI Matlab ) Memahami konsep penelitian Memahami tatatulis ilmiah standar nasional
8
PERSAMAAN LINIER Model yang paling sederhana dan penting pada matematika terapan adalah sistem persamaan linier misalnya Sistem persamaan tersebut terdiri atas 2 anu dengan 2 persamaan, tentu saja sangat mudah untuk diselesaikan
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.