Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

STATIC GAME THEORY PENGANTAR TEORI GAME.  Games in the normal form- An application: “An Economic Theory of Democracy”  Carl Henrik Knutsen  5/6-2008.

Presentasi serupa


Presentasi berjudul: "STATIC GAME THEORY PENGANTAR TEORI GAME.  Games in the normal form- An application: “An Economic Theory of Democracy”  Carl Henrik Knutsen  5/6-2008."— Transcript presentasi:

1 STATIC GAME THEORY PENGANTAR TEORI GAME

2  Games in the normal form- An application: “An Economic Theory of Democracy”  Carl Henrik Knutsen  5/6-2008

3 Normal form: A way of representing games. Most appropriate for static games, but can also be used for dynamic games. These are however best represented otherwise (extensive form) Today: Static games of complete information Complete information: Players pay-off function are known Can have stochastic elements in game even if complete information Perfect info: History of game known to all players. Unproblematic in static game. Game can be interpreted as static even if players move sequentially in real world, but no players must observe others’ moves

4 The Normal Form Normal form dengan informasi yang lengkap dan sempurna Berisi deskripsi dari : Agents Strategi-strategi, s i (bagian action plan): (s 1 ….s n ) adalah profil strategi Payoffs

5 Game Bentuk Normal Form Player 1\Player 2LeftRight Up(2,0)(3,1)(3,1) Down(5,2)(5,2)(2,4)

6 Konsep Solusi  Strictly (ketat) dan weakly (lemah) mendominasi strategi-strategi  Secara iteratif mengeliminasi strategi strictly yang dominan  Sekumpulan strategi yang bertahan dari eliminasi adalah strategi yang rasional  Secara intuitif menarik, tapi konsep solusi yang lemah: Banyak strategi yang tersisa yang mungkin tampak kekeuh

7 Nash-equilibrium  Keseimbangan adalah Suatu strategi (si) dikatakan strategi dominan bagi Pi jika u(si)≥ u(sj), dengan u(si) dan u(sj) adalah perolehan dari strategi si dan sj dimana i ≠ j untuk semua s ∈ S.  Dalam setiap permainan, setiap pemain akan selalu menggunakan dominan karena sifat rasional yang diasumsikan pada setiap pemain.  Tetapi dalam beberapa permainan, tidak terdapat strategi dominan sehingga pemain harus mencari strategi lain untuk memaksimumkan perolehannya.  Dengan menggunakan mixed-strategy seorang pemain dapat menentukan strategi yang akan digunakannya dengan cara memilih strategi yang akan digunakannya dengan suatu distribusi peluang sehingga strategi yang akan digunakan bukan bersifat deterministik tetapi bersifat stokastik.  Dengan menggunakan mixed-strategy komposisi strategi yang akan digunakan oleh pemain adalah berupa himpunan pasangan berurut distribusi-distribusi peluang yang akan digunakan oleh setiap pemain.

8 Nash-equilibrium  Definisi lain tentang Nash-equilibrium adalah kondisi dimana strategi-strategi yang digunakan oleh setiap pemain adalah strategi yang optimal baginya jika diberikan strategi pemain lainnya dalam permainan tersebut dimana setiap pemain tidak dapat meningkatkan hasil perolehannya dengan menggantikan strateginya.

9 Best response dan Nash-equilibrium  Respon terbaik : Strategi yang memberikan payoff tertinggi. Diberi kepercayaan tentang pilihan pemain lain  Dalam strategi two-player games merupakan respon terbaik jika dan hanya jika mereka tidak didominasi secara ketat  Strategi profilnya adalah Nash-equilibrium jika dan hanya jika setiap strategi yang ditentukan oleh pemain adalah respon terbaik untuk strategi pemain lainnya.  “Nobody regrets choice given other player’s choice”  Kestabilan dari Nash-equilibrium: No incentives to deviate unilaterally

10 Memilih Strategi  Dalam permainan dua pemain berjumlah nol ini tujuannya adalah menemukan jawab yang kokoh bagi kedua pemain.  Memilih strategi sama artinya dengan menemukan jawab permainan.  Jawab yang dimaksud hanya ada bila tiap pemain berusaha memperkecil derita atau memperbesar perolehan, dengan kata lain tiap pemain berusaha meraih strategi optimal bagi dirinya sehingga tidak ada lagi dari antara pemain yang dapat meningkatkan posisi masing- masing dengan memilih strategi lain.  Hasil yang diharapkan bila kedua pemain telah menggunakan strategi optimalnya disebut “harga permainan”.  Salah satu langkah dari satu permainan adalah pemilihan satu strategi oleh tiap pemain.  Usaha menemukan strategi optimal dan harga permainan di sebut menyelesaikan permainan dan langkah berikutnya tidak boleh lagi dilanjutkan dan permainan telah selesai.

11 Downs (1957)  Foreword: “Downs assume that political parties and voters act rationally in the pursuit of certain clearly specified goals – it is this assumption in fact, that gives his theory its explanatory power”  A classic in political economy/political economics  “Starting point” for numerous models on party and voter behavior

12 Asumsi  Demokrasi dengan pemilu berkala, kebebasan berbicara, dll  Tujuan : Meningkatkan dukungan politik (pemilih)  Mengendalikan pemerintahan. Control of office pre se and not policy is motivation in model. Policy as mean.  Mayoritas (parpol atau koalisi) memajukan pemerintahan  Berbagai tingkatan ketidakpastian  Rational and self-interested (within limits) voters and parties

13 Analisis 1  Narrow model: Two “coherent” parties or two candidates, no uncertainty, one dimension  Further assumption, voters’ ideal locations on policy- dimension (e.g. left-right) are uniformly distributed on interval. Normalize to [0,1]  Strategy sets for two candidates, S 1 =S 2 = [0,1]  Strategy profile denoted (s 1,s 2 )  Uniform distribution: Number (share) of voters = width of intervals.  If s 2 >s 1  all voters to left of (s 1 +s 2 )/2 votes for 2

14 Contoh  2 chooses policy 0,7, 1 chooses 0,6. All voters to the left of 0,65 votes for 2  1 wins.  Can this be a proper solution to the game? No!  Nash Equilibrium: Player 2 is not playing best response to 0,6. Will win majority if plays for example 0,59  But then 1 will not play a best response..choose for example 0,58

15 Nash-equilibrium?  Assume winning government gives u i =1 and not winning gives u i =-1  (s 1,s 2 )= (0,5, 0,5) is a Nash equilibrium, since both strategies are best responses to other. (Assume 50% probability of winning when tie). Nobody wants to unilaterally deviate: We have at least one NE (existence)  Any other? No! Proof by contradiction (reductio ad absurdum) If not (0,5, 0,5), at least one has incentive to deviate. We therefore have one and only one NE (uniqueness)  EU 1 = EU 2 = 0 in NE  Same outcome from elimination of weakly dominated strategies. 0,5 weakly dominates all other strategies. 0,5 gives equal or better result than any other strategy for a player, independent of choice of strategy for other player.  Vote maximization and winning government give identical solutions in this set-up

16 Extensions: ideological candidates  Ideological candidates: Ideal points at 0 and 1 for candidates 1 and 2 U 1 = -X 2, U 2 = -(1-X 2 ) are M&M’s suggested utility functions, can be generalized to U(x) = h(-|x-z|)  NE is still (0,5, 0,5)  Logic: Whenever 1 sets policy closer to ideal point (0), 2 can obtain government and thereby a policy that is closer to the other’s ideal point (1) by setting policy closer to 0,5 than 1’s policy. E.g., 0,45 will be beaten by 0,54. 1 is worse off than if had set 0,5 as policy.  Can not be arrived at by iterated elimination of weakly dominated strategies. Why?

17 Extensions: ideological candidates with uncertainty  Ideological candidates with uncertainty (median voter on interval is random draw)  See M&M (105-107)  U 1 = -X 2, U 2 = -(1-X 2 )  First, recognize that player’s will not play strictly dominated strategies: 1 will never play s 1 >s 2 and 2 will never play s 2 0,5 and s 2 <0,5 are strictly dominated. Then express the expected utilities of the two players: Remember that EU(p) = p 1 u 1 + p 2 u 2 +…+p n u n and n is here 2 (win and lose)

18 Continued example  EU 1 = p(win)*u(win)+p(lose)*u(lose)  ((s 1 +s 2 )/2)*-s 1 2 + (1-(s 1 +s 2 )/2)*-s 2 2  Max expression with respect to s 1. s 2 is taken as given. Differentiate and set equal to 0.  After some algebra we obtain the “best response function” (*) s 1 =s 2 /3 (the other solution is not in [0,1]  Perform identical operation for player 2: We obtain 2’s best response function (**) s 2 = 2/3 + s 1 /3  We now have two equations and two variables  gives unique solution. Insert s 2 from ** into right hand side of *  Optimal solutions are ¼ and ¾ for 1 and 2 respectively.

19 The logic  Players max expected utility  One player’s utility depends on other player’s choice of strategy  We therefore obtain two general best- response functions, which indicate best response for one player given different strategy-choices by other player.  We know that in NE, both players must play best response  We are therefore in NE on a point that satisfies both BR-functions: solve as equation system..and voila (should have checked for second order conditions etc, but….)


Download ppt "STATIC GAME THEORY PENGANTAR TEORI GAME.  Games in the normal form- An application: “An Economic Theory of Democracy”  Carl Henrik Knutsen  5/6-2008."

Presentasi serupa


Iklan oleh Google