Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
1
Pengantar Teknologi Informasi
KONSEP BILANGAN Pengantar Teknologi Informasi
2
Sistem Bilangan Number System adalah Suatu cara untuk mewakili besaran dari suatu item fisik. Sistem Bilangan menggunakan suatu bilangan dasar atau basis (base / radix) yang tertentu. Dalam hubungannya dengan komputer.
3
sistem bilangan tak bertanda
Macam-macam sistem bilangan ditentukan berdasarkan radix atau base-nya. Beberapa jenis sistem bilangan antara lain adalah sistem bilangan decimal, sistem bilangan biner, sistem bilangan heksadesimal, sistem bilangan octal, sistem bilangan Binary Coded Decimal (BCD), dan lain sebagainya.
4
Bilangan decimal (base 10)
Sistem bilangan decimal adalah sistem bilangan yang banyak dipergunakan dalam kehidupan sehari-hari. Sistem ini menggunakan radix atau base 10. Bilangan Base 10 artinya bilangan yang memiliki perpangkatan 10 (semisal 100, 101, 102, dan lain sebagainya). Bilangan yang ada dalam sistem bilangan ini antara lain adalah 0, 1, 2, 3, 4, 5, 6, 7, 8, dan 9. Sebagai contoh adalah bilangan 157(10). Hasil dari Bilangan decimal 157(10) adalah : 157(10) = (1 x 100) + (5 x 10) + (7 x 1).
5
Bilangan biner (base 2) Sistem bilangan biner adalah sistem bilangan dengan base 2. Bilangan Base 2 artinya bilangan yang memiliki perpangkatan 2 (semisal 20, 21, 22, dan lain sebagainya). Bilangan yang ada dalam sistem bilangan ini antara lain adalah 0 dan 1.
6
Konversi Bilangan Biner ke dalam Bilangan Desimal
Perhatikan contoh di bawah ini! Di bawah ini merupakan contoh konversi atau mengubah dari bilangan biner ke dalam bilangan decimal. 1110(2) = (1 x 23) + (1 x 22) + (1 x 21) + (0 x 20) = = 14
7
Konversi bilangan Desimal ke dalam bilangan Biner
Untuk mengubah angka desimal menjadi angka biner digunakan metode pembagian dengan angka 2 sampai hasil terakhir 0. Mari kita perhatikan contohnya! 205(10) 205 : 2 = sisa 1 102 : 2 = 51 sisa 0 51 : 2 = 25 sisa 1 25 : 2 = 12 sisa 1 12 : 2 = 6 sisa 0 6 : 2 = 3 sisa 0 3 : 2 = 1 sisa 1 1 : 2 = 0 sisa 1 Maka hasilnya: 205(10) = (2)
8
Konversi bilangan Desimal ke dalam bilangan Biner
Note: Untuk menuliskan notasi binernya, pembacaan dilakukan dari bawah yang berarti (2)
9
Bilangan heksadesimal (base 16)
Sistem bilangan heksadesimal adalah sistem bilangan dengan base 16. Bilangan Base 16 artinya bilangan yang memiliki perpangkatan 16 (semisal 160, 161, 162, dan lain sebagainya). Bilangan yang ada dalam sistem bilangan ini antara lain adalah 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, dan F. Karena Heksadesimal merupakan pangkat dari dua, maka Heksadesimal berkaitan dengan prinsip biner.
10
Konversi bilangan Heksadesimal ke bilangan biner
DIGIT HEKSADESIMAL DIGIT BINER 0000 0001 1 0010 2 0011 3 0100 4 0101 5 0110 6 0111 7 1000 8 1001 9 1010 A 1011 B 1100 C 1101 D 1110 E 1111 F
11
Konversi dari bilangan heksadesimal ke bilangan biner
Ubahlah bilangan heks 5D9316 menjadi bilangan biner! 5 = 0101 D = 1101 9 = 1001 3 = 0011 Note: Jadi bilangan biner untuk heks 5D9316 adalah
12
Konversi bilangan biner ke heksadesimal
0010 1101 0110 1100 1011 2 D 6 C B Maka hasilnya adalah 2D6CB
13
Bilangan octal (base 8) Sistem bilangan octal adalah sistem bilangan dengan base 8. Bilangan Base 8 artinya bilangan yang memiliki perpangkatan 8 (semisal 80, 81, 82, dan lain sebagainya). Bilangan yang ada dalam sistem bilangan ini antara lain adalah 0, 1, 2, 3, 4, 5, 6, dan 7. Karena octal merupakan pangkat dari dua, maka octal berkaitan dengan prinsip biner.
14
Konversi bilangan octal ke bilangan biner
DIGIT OCTAL DIGIT BINER 0000 0001 1 0010 2 0011 3 0100 4 0101 5 0110 6 0111 7
15
Konversi Oktal ke biner
Ubahlah bilangan oktal menjadi bilangan biner! Note: Masing-masing digit oktal diganti dengan ekivalens 3 bit (biner)
16
Konversi bilangan biner ke octal
Ubahlah bilangan biner menjadi bilangan oktal! Maka hasilnya adalah 12415 001 010 100 101 1 2 4 5
17
Binary Coded Decimal BCD adalah sistem pengkodean bilangan desimal yang metodenya mirip dengan bilangan biner biasa; hanya saja dalam proses konversi, setiap simbol dari bilangan desimal dikonversi satu per satu, bukan secara keseluruhan seperti konversi bilangan desimal ke biner biasa. Hal ini lebih bertujuan untuk “menyeimbangkan” antara kurang fasihnya manusia pada umumnya untuk melakukan proses konversi dari desimal ke biner -dan- keterbatasan komputer yang hanya bisa mengolah bilangan biner.
18
Konversi bilangan BCD ke bilangan desimal
DIGIT BCD DIGIT DESIMAL 0000 0001 1 0010 2 0011 3 0100 4 0101 5 0110 6 0111 7 1000 8 1001 9
19
Konversi bilangan BCD ke decimal
BCD adalah sistem pengkodean bilangan desimal yang metodenya mirip dengan bilangan biner biasa; hanya saja dalam proses konversi, setiap simbol dari bilangan desimal dikonversi satu per satu, bukan secara keseluruhan seperti konversi bilangan desimal ke biner biasa. Hal ini lebih bertujuan untuk “menyeimbangkan” antara kurang fasihnya manusia pada umumnya untuk melakukan proses konversi dari desimal ke biner -dan- keterbatasan komputer yang hanya bisa mengolah bilangan biner.
20
Konversi bilangan BCD ke bilangan desimal
Misalkan bilangan yang ingin dikonversi adalah BCD. Hasil perhitungannya adalah sebagai berikut: 0001 1 01117 00000 Maka hasilnya adalah
21
Konversi bilangan decimal ke BCD
Misalkan bilangan yang ingin dikonversi adalah Hasil perhitungannya adalah sebagai berikut: 110 0001BCD 710 0111BCD 010 0000BCD Maka hasil nya adalah BCD
22
Bilangan bertanda (Signed fixed point numbers)
Bilangan bulat (integer) dapat dibagi menjadi 2 jenis, yaitu: bulat tak-bertanda (unsigned integer) dan bulat bertanda (signed integer). Bilangan bulat tak bertanda adalah bilangan bulat yang tidak mengandung tanda bilangan positif atau negatif, sedangkan bilangan bulat bertanda mempunyai nilai positif atau negatif. Pada sistem desimal tanda bilangan menggunakan simbol + untuk bilangan positif dan simbol – untuk bilangan negatif. Persoalan muncul pada mesin digital, yaitu bagaimana tanda – atau + disimpan didalam memori yang hanya dapat menyimpan simbol 0 dan 1. Karena itu untuk sistem bilangan biner diperlukan penyajian tertentu untuk menyatakan suatu bilangan adalah positif atau negatif. Untuk bilangan biner ada 2 cara penyajian bilangan bulat bertanda, yaitu: sign-and-magnitude, one’s Complement, two’s complement dan Excess Representation.
23
Signed magnitude Signed Magnitude Juga di sebut “sign and magnitude”. Cara mengubah bilangan bertanda decimal menjadi bilangan biner dengan sign magnitude adalah dengan Bit paling kiri merupakan tanda (sign) (0 = positive, 1 = negative) dan bit sisanya merupakan magnitude. Contoh: +2510 = -2510 = Note: 2 representasi dari nilai 0: +0 = -0 = Nilai terbesar adalah , Nilai terkecil adalah , jika dengan menggunakan representasi 8-bit.
24
One’s complement Cara mengubah bilangan bertanda decimal menjadi bilangan biner dengan One’s complement adalah Bit paling kiri adalah tanda (sign) (0 = positive, 1 = negative). Bilangan One’s complement diperoleh dengan cara membalik setiap bit (0 1, dan 1 0 ) Contoh: +2510 = -2510 = Note: 2 representasi dari nilai 0: +0 = -0 = Nilai terbesar adalah , Nilai terkecil adalah , jika dengan menggunakan representasi 8-bit.
25
Two’s complement Cara mengubah bilangan bertanda decimal menjadi bilangan biner dengan Two’s complement adalah dengan Bit paling kiri merupakan tanda (0 = positive, 1 = negative). Bilangan Two’s complement Diperoleh dengan cara membalik setiap bit ( 0 1, dan 1 0 ) kemudian ditambah 1.
26
Contoh Contoh Note: 2 representasi dari nilai 0: +0 = 000000002
-0 = Nilai terbesar adalah , Nilai terkecil adalah , menggunakan representasi 8-bit. = 1 (One’s Complement) + = (Two’s Complement)
27
Excess Representation
Cara mengubah bilangan bertanda decimal menjadi bilangan biner dengan Two’s complement adalah dengan Bit paling kiri adalah tanda (biasanya 1 = positive, 0 = negative). Representasi positif dan negatif dari suatu bilangan diperoleh dengan menambahkan bias ke representasi two’s complement. Contoh(excess 128 menambahkan 128 ke versi two’s complement, Biarkan semua carry out pada MSB) : 12 = +1210 = -1210 =
28
Excess Representation
Didapat dari: Note: representasi dari nilai 0: +0 = -0 = Nilai terbesar adalah , Nilai terkecil adalah , menggunakan representasi 8-bit. Bilangan biner One’s Complement (-12) Two’s Complement (-12) Excess Representation (-12)
29
3-Bit Signed Integer Representations
30
Bilangan Pecah Bilangan pecahan bisa muncul dari adanya operasi pembagian yang tidak habis dibagi. Contoh dalam desimal, misalkan kita membagi bilangan 23 dengan 4, maka hasilnya tidak bulat karena ada sisa, hasil bulatnya adalah 5 dan sisanya adalah 3. Untuk dituliskan dalam satu notasi yang utuh maka dituliskan bagian bulatnya dan bagian pecahannya yang dipisahkan oleh „titik‟ (yang biasanya disebut titik desimal). Untuk contoh tersebut hasilnya dituliskan 5.75 (karena ¾ = 0.75). Bilangan yang mempunyai nilai pecahan (misalnya ) dapat direpresentasikan dengan dua format bilangan: fixed-point dan floating-point.
31
Fixed Point Numbers Bilangan pecahan fixed-point mempunyai jangkauan yang dibatasi oleh jumlah digit signifikan yang digunakan untuk merepresentasikan bilangan tersebut. Misalnya bilangan pecahan desimal sepuluh digit. Bilangan tersebut dinyatakan dengan fixed-point, yaitu satu digit untuk tanda, empat digit untuk angka utuh dan lima digit untuk angka pecahan. Jangkauan bilangan tersebut adalah 0 sampai 9999 untuk angka utuh dan sampai untuk angka pecahan, sehingga nilai bilangan yang mungkin adalah sampai dengan presisi Contoh bilangan tersebut yang valid adalah dan Bilangan ±10000 tidak bisa dinyatakan dengan sistem bilangan sepuluh digit ini. Sedangkan bilangan tidak memenuhi derajat presisi yang diinginkan, walaupun berada dalam jangkauan bilangan. Bilangan tersebut akan dibulatkan ke atau , yang berarti ada selisih sebesar ± dari nilai yang diinginkan. Contoh:
32
Floating Point Numbers
Bilangan pecahan dapat disajikan dengan 2 cara yaitu: titik tetap (Fixed Point) dan titik-mengambang Floating Point). Cara pertama yaitu dengan menampakkan titik desimal pada posisi tertentu. Sedangkan cara kedua menggunakan notasi perkalian dengan radiks yang dipangkatkan tertentu, dengan nilai pangkat bisa positif atau negatif. Contoh-contoh dalam desimal: Contoh 1. Fixed-point = Dalam Floating Point = x 10(+3) Ditulis dengan notasi = E+3
33
Aritmatika Bilangan Pada bagian ini kita akan membahas penjumlahan dan pengurangan biner.
34
Penjumlahan Bilangan Biner
Penjumlahan biner tidak begitu beda jauh dengan penjumlahan desimal. Seperti bilangan desimal, bilangan biner juga dijumlahkan dengan cara yang sama. Pertama-tama yang harus dicermati adalah aturan pasangan digit biner berikut: 0 + 0 = 0 0 + 1 = 1 1 + 1 = 0 dan menyimpan 1 = 1 dengan menyimpan 1
35
Contoh 1
36
Pengurangan Bilangan Biner
Pengurangan biner dapat dilaksanakan dengan cara yang sama. Tapi untuk menghindarkan kebingungan silahkan lihat Bentuk Umum pengurangan berikut: 0 – 0 = 0 1 – 0 = 0 1 – 1 = 0 0 – 1 = 1 (dengan meminjam ‘1’ dari digit disebelah kirinya! )
37
Contoh 1 bilangan biner untuk 123 bilangan biner untuk 41 - Desimal 82
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.