Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
1
PENGAMBILAN KEPUTUSAN
MODEL DAN TEKNIK PENGAMBILAN KEPUTUSAN Heri Suprapto
3
PENGAMBILAN KEPUTUSAN
Pembuatan Keputusan merupakan bagian kunci kegiatan: Eksekutif Manajer Karyawan Setiap manusia dalam kehidupannya
4
Tipe-tipe keputusan Keputusan terprogram (struktur)
Dibuat menurut kebiasaan, aturan, prosedur; tertulis maupun tidak Bersifat rutin, berulang-ulang Keputusan tak terprogram (tidak terstruktur) Mengenai masalah khusus, khas, tidak biasa Kebijakan yang ada belum menjawab Mis. Pengalokasian sumber daya
5
Teknik Keputusan Terprogram
Tradisional Kebiasaan Mengikuti prosedur baku Saluran informasi disusun dengan baik Modern Menggunakan teknik “operation research”: Formula matematika Simulasi komputer Berdasarkan pengolahan data berbantu komputer
6
Teknik Keputusan Tak Terprogram
Modern Teknik pemecahan masalah yang diterapkan pada : Latihan pembuatan keputusan Penyusunan program komputer empiris Tradisional Kebijakan intuisi berdasarkan kreativitas Coba-coba Seleksi dan latihan para pelaksana
7
Proses pembuatan keputusan ( 1 )
1. Pemahaman dan perumusan masalah Identifikasi gejala yang muncul Cari penyebabnya/masalah utama Cari bagian-bagian yang perlu dipecahkan Pergunakan analisis sebab-akibat 2. Pengumpulan dan analisis data yang relevan Menentukan data yang relevan Mengumpulkan data Mencari pola dari data yang terkumpul 3. Pengembangan alternatif-alternatif Berdasarkan data, disusun beberapa alternatif Untuk setiap alternatif susun pro & kontra, konsekuensi, resiko Semua alternatif harus feasible
8
Proses pembuatan keputusan (2)
4. Evaluasi Alternatif-alternatif Nilai efektivitas dari setiap alternatif, tolok ukur Realistik bila dihubungkan dengan tujuan & sumber daya organisasi Seberapa jauh memecahkan masalah 5. Pemilihan alternatif terbaik Berdasarkan alternatif, alternatif terbaik dipilih atau pilih kompromi dari beberapa alternatif 6. Implementasi keputusan Susun rencana untuk menerapkan keputusan Disiapkan mekanisme laporan periodik Bila perlu bangun sistem peringatan dini 7. Evaluasi hasil keputusan
9
Pembuatan keputusan secara kelompok
Keunggulan: Adanya pengetahuan yang lebih luas Pencarian alternatif keputusan lebih luas Adanya kerangka pandangan yang lebar Resiko keputusan ditanggung kelompok Karena keputusan kelompok, setiap individu termotivasi untuk melaksanakan Dapat terwujudnya kreativitas yang lebih luas, karena adanya berbagai pandangan
10
Pembuatan keputusan secara kelompok
Kelemahan: Lempar tanggung jawab mudah terjadi Memakan waktu dan biaya lebih Efisiensi pengambilan keputusan menurun Keputusan kelompok dapat merupakan kompromi atau bukan sepenuhnya keputusan kelompok Bila ada anggota yang dominan, keputusan bukan mencerminkan keinginan kelompok
11
Alat bantu Pengambilan keputusan
Decision Tree Metode operation research Linear programming, queuing theory Network analysis (ie. CPM) Bantuan komputer Information System, Expert System, DSS, EIS
12
Decision Tree A B $100M $10M $200M -$20M
13
Linear Programming X = jumlah motor yg diproduksi
Y = jumlah mobil yg diproduksi Profit = 800X Y Batasan Biaya produksi: 1000X Y <= Batasan jumlah motor : X >= 50 Berapa X & Y agar Profit maksimum ?
14
TEKNIK PENGAMBILAN KEPUTUSAN
15
Definisi dan Philosofi Sistem
System Definition Element (E1) E2 E3 E5 E4 Sub Goal Goal System Phylosophy Goal Oriented (Cybernetic) C S Holistic Not Partial H Effectiveness Not Efficiency E
16
Teknik Pengambilan Keputusan
Hirarki Fungsi Manajemen Sifat Top Level Up Medium Low Lower Perencanaan “Staffing” Pengorganisasian Pelaksanaan Monitoring Evaluasi Directif Strategis Taktis Operasional Cara Dengan Intuisi Dengan Analisa Keputusan
17
Tabel: Permasalahan manajemen
Jangka Lingkungan Sifat Direktif Panjang Dinamis dan probalistik intuitif Arahan-arahan strategis yang kadang bersifat intuitif Strategis Dinamis dan mempengaruhi faktor-faktor dengan kepastian yang sangat rendah Tidak bisa diprogram karena preferensi pengambil keputusan perlu masuk secara utuh Taktis Menengah-pendek Dinamis dan mempengaruhi faktor-faktor dengan asumsi kepastian yang tinggi Bisa dibuat program dengan masukan preferensi pengambil keputusan Operasional Pendek Dianggap statik dan tidak mempengaruhi faktor-faktor Bisa dibuat program karena sifatnya berulang
18
Pengambilan Keputusan Dengan Intuisi
Tidak Pasti Kompleks Dinamis Persaingan Terbatas Pilihan Informasi Preferensi Intuisi Logika tidak dapat diperiksa Keputusan Hasil Kecerdasan Persepsi Falsafah Bingung cemas Berfikir Rasa tidak Enak Bertindak Puji Cela LINGKUNGAN REAKSI Gambar : Pengambilan Keputusan dengan Intuisi Senang Sedih
19
Pengambilan Keputusan dengan Analisa Keputusan
ANALISA KEPUTUSAN (Normatif) LINGKUNGAN Kecerdasan Pilihan Informasi Preferensi Alternatif2 Penetapan kemungkinan Struktur Model Penetapan Nilai Preferensi Waktu Preferensi Risiko Tidak Pasti Kompleks Dinamis Persaingan Terbatas Persepsi Logika Keputs. Hasil Falsafah Sensitifitas nilai informasi Bingung cemas Berfikir Rasa tidak Enak Pandangan ke dalam Bertindak Puji Cela Senang Sedih REAKSI Pengambilan Keputusan dengan Analisa Keputusan
20
Komponen Keputusan Alternatif Keputusan Kriteria Keputusan
Bobot Kriteria Model Penilaian Model Penghitungan Tipe Pengambil Keputusan
21
Model Penilaian 1. Menggunakan Nilai Numerik (Nyata)
Kriteria dan atau alat ukurnya jelas (obyektif) Sebagai misal Suhu Ruang (termometer) Tinggi Badan Berat Badan Hasil perhitungan dengan rumus yang jelas: BCR IRR NPV
22
MODEL PENILAIAN Menggunakan Skala Ordinal
Kriteria kompleks melibatkan presepsi (subyektif) Jumlah skala 3; 5; 7 (disarankan ganjil) Sebagai misal Rasa TEH (5 Skala) 1. Sangat tidak enak Enak 2. Tidak Enak Sangat enak 3. Cukup Enak Stabilitas politik (3 Skala) Kurang Stabil Sangat Stabil Stabil
23
MODEL PENILAIAN 3. Menggunakan Nilai Perbandingan Berpasangan
Misal pada AHP : <misal A dibandingkan dengan B> 1 : A dan B sama penting : A sangat nyata lebih penting dari B 3 : A sedikit lebih penting dari B 9 : A pasti lebih penting dari B 5 : A jelas lebih penting dari B Pembacaan Lain: 3: A tiga kali lebih penting dari B 5: A lima kali lebih penting dari B
24
Model Penilaian Fuzzy (trapezoidal) usia penduduk
25
Model Penilaiann Fuzzy Tingkat Kemiskinan Penduduk
26
Latihan Model Penilaian
Berikan contoh kasus penerapan metode penilaian dengan: Terukur Jelas Skala Ordinal Preferensi Fuzzy
27
PENGAMBILAN KEPUTUSAN BERBASIS INDEKS KINERJA
METODE BAYES METODE PERBANDINGAN EKSPONENSIAL (MPE) COMPOSIT PERFORMANCE INDEX (CPI)
28
Σ Σ MATRIK KEPUTUSAN : MODEL PENGHITUNGAN Vij * Bj , Bj = 1.0
ALTERNA-TIF KRITERIA NILAI ALT. KEP. RANGKING K1 K2 ….. Kn ALT1 V11 V12 V1n Nk1 ALT2 V21 V22 V2n Nk2 ALT3 : ALTm Vm1 Vm2 Vmn Nkm BOBOT B1 B2 Bn MODEL PENGHITUNGAN BAYES : Nki = n Σ j = 1 Vij * Bj , Bj = 1.0 2. Per. Eksponensial : Nki = n Σ j = 1 (Vij ) Bj , Bj = Bulat >0 3. Composite Performance Indeks (CPI)
29
Contoh Kasus = Fokus = Pemilihan media iklan yang sesuai
Alternatif = 1. Radio 2. Televisi 3. Surat Kabar Kreteria = 1. Jangkauan 2. Efektifitas Pesan 3. Biaya Metode Penilaian = ordinal 1. Sangat Kurang 4. Bagus 2. Kurang 5. Sangat Bagus 3. Biasa
30
Matrik Keputusan Alternatif Kriteria Nilai Keputusan Jangkauan Eff.
Biaya Bayes MPE 1. Radio 4 3 2. Televisi 5 2 3. Surat Kabar Bobot 0,3 0,4
31
A. METODE BAYES Merupakan teknik yang digunakan untuk melakukan analisis dalam pengambilan keputusan terbaik dari sejumlah alternatif Persamaan Bayes yang digunakan untuk menghitung nilai setiap alternatif disederhanakan menjadi : dimana: Total Nilai i= total nilai akhir dari alternatif ke-i Nilai ij = nilai dari alternatif ke-i pada kriteria ke-j Krit j = tingkat kepentingan (bobot) kriteria ke-j i = 1,2,3,…n; n = jumlah alternatif j = 1,2,3,…m; m = jumlah kriteria m Total Nilai i = Nilai ij (Kritj) j = 1
32
Contoh Kasus = Fokus = Pemilihan media iklan yang sesuai
Alternatif = 1. Radio 2. Televisi 3. Surat Kabar Kreteria = 1. Jangkauan 2. Efektifitas Pesan 3. Biaya Metode Penilaian = ordinal 1. Sangat Kurang 4. Bagus 2. Kurang 5. Sangat Bagus 3. Biasa
33
Matrik Keputusan Alternatif Kriteria Nilai Keputusan Jangkauan Eff.
Biaya Bayes MPE 1. Radio 4 3 3,7 (2) 2. Televisi 5 2 3,8 (1) 3. Surat Kabar 3,6 (3) Bobot 0,3 0,4
34
Nilai (Radio) = 4 (0,3) + 4 (0,4) + 3 (0,3) = 3,7
Tabel: Matrik keputusan penilaian media iklan yang sesuai dengan Teknik Bayes Alternatif Kriteria Nilai Peringkat Jangkauan Efektvitas Biaya 1. Radio 4 3 3,7 2 2. Televisi 5 3,8 1 3. Surat Kabar 3,6 Bobot Kriteria 0,3 0,4 Nilai (Radio) = 4 (0,3) + 4 (0,4) + 3 (0,3) = 3,7 Dengan menggunakan perumusan Bayes, diperoleh nilai alternatif 1,2, dan 3 masing-masing 3,7; 3,8; dan 3,6 sehingga didapat alternatif yang terurut dari yang terbaik adalah alternatif 2, 1, dan 3.
35
B. METODE PERBANDINGAN EKSPONENSIAL (MPE)
Merupakan salah satu metode untuk menentukan urutan prioritas alternatif keputusan dengan kriteria jamak Teknik ini digunakan sebagai pembantu bagi individu pengambilan keputusan untuk menggunakan rancang bangun model yang telah terdefinisi dengan baik pada tahapan proses Prosedur MPE Formulasi perhitungan skor untuk setiap alternatif dalam metoda perbandingan eksponensial adalah: m Total nilai (TNi) = (RK ij)TKK j j=1
36
dengan : TNi = Total nilai alternatif ke -i RK ij = derajat kepentingan relatif kriteria ke-j pada pilihan keputusan i TKK j = derajat kepentingan kritera keputusan ke-j; TKKj > 0; bulat n = jumlah pilihan keputusan m = jumlah kriteria keputusan Penentuan tingkat kepentingan kriteria dilakukan dengan cara wawancara dengan pakar atau melalui kesepakatan curah pendapat. Penentuan skor alternatif pada kriteria tertentu dilakukan dengan memberi nilai setiap alternatif berdasarkan nilai kriterianya
37
Mengurangi bias yang mungkin terjadi dalam analisa
Keuntungan Metode MPE Mengurangi bias yang mungkin terjadi dalam analisa Nilai skor yang menggambarkan urutan prioritas menjadi besar (fungsi eksponensial) ini mengakibatkan urutan prioritas alternatif keputusan lebih nyata
38
Nilai(Radio) = 4^3 + 4^4 + 3^3 = 64 + 256 + 27 = 347
Matrik Keputusan Alternatif Kriteria Nilai Keputusan Jangkauan Eff. Biaya Bayes MPE 1. Radio 4 3 3,7 (2) 2. Televisi 5 2 3,8 (1) 3. Surat Kabar 3,6 (3) Bobot 0,3 0,4 Nilai(Radio) = 4^3 + 4^4 + 3^3 = = 347 Nilai(Televisi) = ? Nilai(Surat Kabar) = ?
39
Evaluating Hardware and Software
Hardware Evaluation Factors Performance Cost Reliability Compatibility Technology Connectivity Scalability Support Software Software Evaluation Factors Quality Flexibility Security Connectivity Language Documentation Hardware Efficiency
40
Latihan Penerapan Metode Bayes dan MPE
Fokus = Alternatif = 1. 2. 3. Kreteria = 1. 2. 3. Metode Penilaian : ordinal (generik) 1. Sangat Kurang 4. Bagus 2. Kurang 5. Sangat Bagus 3. Biasa
41
Matrik Keputusan Alternatif Kriteria Nilai Keputusan Bayes MPE 1. 2.
3. Bobot
42
C. COMPOSIT PERFORMANCE INDEX (CPI)
Merupakan indeks gabungan (Composite Index) yang dapat digunakan untuk menentukan penilaian atau peringkat dari berbagai alternatif (i) berdasarkan beberapa kriteria (j). Formula yang digunakan dalam teknik CPI : Aij = Xij (min) x 100 / Xij (min) A(i + 1.j) = (X(I + 1.j) )/ Xij (min) x 100 Iij = Aij x Pj n Ii = (Iij) j =1
43
Keterangan: Aij = nilai alternatif ke-i pada kriteria ke – j Xij (min) = nilai alternatif ke-i pada kriteria awal minimum ke-j A(i + 1.j) = nilai alternatif ke-i + 1 pada kriteria ke – j X(i + 1.j) = nilai alternatif ke-i + 1 pada kriteria awal ke – j Pj = bobot kepentingan kriteria ke – j Iij = indeks alternatif ke-i Ii = indeks gabungan kriteria pada alternatif ke –i i = 1, 2, 3,…, n j = 1, 2, 3,…, m
44
Sebagai ilustrasi, terdapat 3 alternatif yang dinilai yaitu Software House, Internet Provider, Production House dengan kriteria kelayakan IRR (Internal Rate of Return), B/C (Benefit/Cost Ratio) dan Pay Back Period (waktu pengembalian modal) Tabel: Matrik awal penilaian alternatif pemilihan usaha yang paling layak Alternatif Kriteria IRR (%) B/C PBP (Thn) 1. Software House 30 1,1 5 2. Internet Provider 20 1,15 6 3. Production House 25 1,2 4 Bobot Kriteria 0,3 0,4
45
Prosedur Penyelesaian CPI
Identifikasi kriteria tren positif (semakin tinggi nilaianya semakin baik) dan tren negatif (semakin rendah nilainya semakin baik) Untuk kriteria tren positif, nilai minimum pada setiap kriteria ditranspormasi ke seratus, sedangkan nilai lainnya ditranspormasi secara proporsional lebih tinggi. Untuk kriteria tren negatif, nilai minimum pada setiap kriteria ditranspormasi ke seratus, sedangkan nilai lainnya ditranspormasi secara proporsional lebih rendah. Perhitungan selanjutnya mengikuti prosedur Bayes.
46
Dengan demikian alternatif 3 yaitu Production House peringkat 1.
Tabel: Matrik hasil transformasi melalui teknik perbandingan indeks kinerja Alternatif Kriteria Nilai Peringkat IRR B/C PBP (Thn) 1. Software House 150 100 80 109 2 2. Internet Provider 104,5 66.7 91,8 3 3. Producton House 125 109,1 111,1 1 Bobot Kriteria 0,3 0,4 Dengan demikian alternatif 3 yaitu Production House peringkat 1.
47
Pemiliha Metode Penilaian Tidak Seragam CPI
Penilaian seragam - Bayes atau MPE Apabila skala penilaian ordinal - MPE Apabil nilai alternatif adalah terukur nyata - Bayes
48
PROSES HIRARKI ANALITIK (ANALYTIC HIERARCHY PROCESS)
49
Konsep Dasar Analytic Hierarchy Process
Dalam suatu proses pengambilan keputusan, para pengambil keputusan seringkali dihadapkan pada berbagai masalah yang bersumber dari beragamnya kriteria.Terkait dengal hal tersebut, Analytic Hierarchy Process (AHP) dapat digunakan untuk menyelesaikan masalah tersebut. AHP dikembangkan di Wharton School of Business oleh Thomas Saaty pada tahun 1970-an. Pada saat itu Saaty merupakan profesor di Wharton School of Business. Pada tahun 1980, Saaty akhirnya mempublikasikan karyanya tersebut dalam bukunya yang berjudul Analytic Hierarchy Process.
50
AHP kemudian menjadi alat yang sering digunakan dalam pengambilan keputusan karena AHP berdasarkan pada teori yang merefleksikan cara orang berpikir. Dalam perkembangannya, AHP dapat digunakan sebagai model alternatif dalam menyelesaikan berbagai macam masalah, seperti memilih portofolio dan peramalan. Dalam kehidupan sehari-hari, manusia sering menghadapi kondisi untuk melakukan pengambilan keputusan dengan segera. Umumnya kita juga telah memikirkan beberapa alternatif solusi, dengan berbagai argumen pro dan kontra
51
AHP dapat memfasilitasi evaluasi pro dan kontra tersebut secara rasional. Dengan demikian, AHP dapat memberikan solusi yang optimal dengan cara yang transparan melalui: analisis keputusan secara kuantitatif dan kualitatif evaluasi dan representasi solusi secara sederhana melalui model hirarki argumen yang logis pengujian kualitas keputusan waktu yang dibutuhkan relatif singkat.
52
Pada prinsipnya, metode AHP ini memecah-mecah suatu situasi yang kompleks, tidak terstruktur, ke dalam bagian-bagian secara lebih terstruktur, mulai dari goals ke objectives, kemudian ke sub-objectives lalu menjadi alternatif tindakan. Pembuat keputusan kemudian membuat perbandingan sederhana hirarki tersebut untuk memperoleh prioritas seluruh alternatif yang ada.
54
Tiga Prinsip Dasar AHP, (Saaty, 1994):
1. Dekomposisi (Decomposition) Setelah persoalan didefinisikan, maka perlu dilakukan decomposition, yaitu memecah persoalan yang utuh menjadi unsur-unsurnya. Jika ingin mendapatkan hasil yang akurat, maka pemecahan terhadap unsur-unsurnya dilakukan hingga tidak memungkinkan dilakukan pemecahan lebih lanjut. Pemecahan tersebut akan menghasilkan beberapa tingkatan dari suatu persoalan. Oleh karena itu, proses analisis ini dinamakan hierarki (hierachy). 2. Penilaian Komparasi (Comparative Judgment) Prinsip ini membuat penilaian tentang kepentingan relatif dua elemen pada suatu tingkat tertentu yang berkaitan dengan tingkat di atasnya. Penilaian ini merupakan inti dari AHP karena berpengaruh terhadap prioritas elemen-elemen. Hasil penilaian ini tampak lebih baik bila disajikan dalam bentuk matriks perbandingan berpasangan (pairwise comparison).
55
Tiga Prinsip Dasar AHP, (Saaty, 1994):
3. Penentuan Prioritas (Synthesis of Priority) Dari setiap matriks pairwise comparison dapat ditentukan nilai eigenvector untuk mendapatkan prioritas daerah (local priority). Oleh karena matriks pairwise comparison terdapat pada setiap tingkat, maka global priority dapat diperoleh dengan melakukan sintesa di antara prioritas daerah. Prosedur melakukan sintesa berbeda menurut hierarki. Pengurutan elemen-elemen menurut kepentingan relatif melalui prosedur sintesa dinamakan priority setting.
56
Manfaat AHP 1. Fokus AHP adalah pencapaian tujuan yang akan menghasilkan keputusan yang rasional. Keputusan yang rasional didefinisikan sebagai keputusan terbaik dari berbagai tujuan yang ingin dicapai oleh pembuat keputusan. Kunci utama keputusan yang rasional tersebut adalah tujuan, bukan alternatif, kriteria, atau atribut. 2. Masalah yang dapat diselesaikan dengan menggunakan AHP meliputi masalah sosial, politik. AHP bermanfaat untuk menghadapi perspektif, rasional dan irrasional, serta risiko dan ketidakpastian dalam lingkungan yang kompleks. AHP juga dapat digunakan untuk meprediksi hasil, merencanakan hasil yang diharapkan di masa yang akan datang, memfasilitasi pembuatan keputusan sebuah kelompok, melakukan kontrol terhadap perubahan sistem pembuatan keputusan, menagalokasikan sumber daya, memilih alternatif, melakukan perbandingan cost/benefit, mengevaluasi karyawan dan mengalokasikan kenaikan gaji
57
Manfaat AHP 3. Secara khusus, AHP sesuai untuk digunakan dalam pengambilan keputusan yang melibatkan perbandingan elemen keputusan yang sulit untuk dinilai secara kuantitatif. 4. AHP merupakan sebuah metode sistematis untuk membandingkan seperangkat tujuan atau alternatif. Dalam hal ini, AHP merupakan proses perumusan kebijakan yang powerful dan fleksibel dalam menentukan prioritas, membandingkan alternatif dan membuat keputusan yang terbaik ketika pengambil keputusan harus mempertimbangkan aspek kuantitatif dan kualitatif. 5. AHP mengurangi kerumitan suatu keputusan menjadi rangkaian perbandingan satu-satu, kemudian mensistesis hasil perbandingan tersebut. Dengan demikian, AHP tidak hanya bermanfaat dalam pembuatan keputusan yang terbaik tetapi juga memberikan dasar yang kuat bahwa keputusan tersebut merupakan keputusan yang terbaik.
58
Standar Penilaian
59
Keuntungan menggunakan AHP sebagai alat analisis
AHP memberi modal tunggal yang mudah dimengerti, luwes untuk beragam persoalan yang tidak terstruktur. AHP memadukan rancangan deduktif dan rancangan berdasarkan sistem dalam memecahkan persoalan kompleks. AHP dapat menangani saling ketergantungan elemen – elemen dalam suatu sistem dan tidak memaksakan pemikiran linier. AHP mencerminkan kecenderungan alami pikiran untuk memilah – milah elemen – elemen suatu sistem dalam berbagai tingkat berlainan dan mengelompokkan unsur yang serupa dalam setiap tingkat. AHP memberi suatu skala dalam mengukur hal – hal yang tidak terwujud untuk mendapatkan prioritas.
60
AHP melacak konsistensi logis dari pertimbangan – pertimbangan yang digunakan dalam menetapkan berbagai prioritas. AHP menuntun ke suatu taksiran menyeluruh tentang kebaikan setiap alternatif. AHP mempertimbangkan prioritas – prioritas relatif dari berbagai faktor sistem dan memungkinkan orang memilih alternatif terbaik berdasarkan tujuan – tujuan mereka. AHP tidak memaksakan konsensus tetapi mensintesis suatu hasil representatif dari penilaian yang berbeda – beda. AHP memungkinan orang memperhalus definisi mereka pada suatu persoalan dan memperbaiki pertimbangan dan pengertian mereka melalui pengulangan.
61
contoh penerapan AHP dalam proses pengambilan keputusan.
Pemerintah bermaksud untuk meningkatkan pelayanan terhadap masyarakatnya. Salah satu upaya yang dilakukan Pemerintah adalah mendirikan beberapa fasilitas umum, seperti jalan; gedung olahraga; dan pasar. Oleh karena itu, Pemerintah perlu mempertimbangkan beberapa kriteria untuk membangun fasilitas umum, antara lain: manfaat dari fasilitas umum, perawatan dari fasilitas umum, dan partisipasi masyarakat. Dalam pengambilan keputusan ini, Pemerintah perlu menentukan peringkat dari berbagai kriteria dan alternatif yang ada agar dapat mengetahui kriteria dan alternatif terpenting. Sebagaimana langkah yang dijelaskan oleh Saaty (2001), metode AHP dapat digunakan untuk membantu Pemerintah Kabupaten Pare-pare dalam pengambilan keputusan ini dengan cara sebagai berikut.
62
Langkah-Langkah Penyelesaian
1.Menentukan tujuan, kriteria, dan alternatif keputusan : Tujuan: Membangun fasilitas umum Kriteria: Manfaat, perawatan, dan partisipasi masyarakat Alternatif: Jalan, gedung olahraga, dan pasar
63
Langkah-Langkah Penyelesaian
2.Membuat “pohon hierarki” (hierarchical tree) untuk berbagai kriteria dan alternatif keputusan
64
Langkah-Langkah Penyelesaian
3.Kemudian dibentuk sebuah matriks pair wise comparison,
65
Langkah-Langkah Penyelesaian
Kemudian diperoleh matriks sebagai berikut:
66
Langkah-Langkah Penyelesaian
67
Langkah-Langkah Penyelesaian
4. Membuat peringkat prioritas dari matriks pairwise dengan menentukan eigenvector, yaitu:
68
Langkah-Langkah Penyelesaian
69
Langkah-Langkah Penyelesaian
70
Langkah-Langkah Penyelesaian
71
5. Membuat peringkat alternatif dari matriks pairwise masing-masing alternatif dengan menentukan eigenvector setiap alternatif. Cara yang digunakan sama ketika membuat peringkat prioritas di atas.
74
Penggunaan AHP untuk Hasil Survai
Apabila kita ingin melakukan metode AHP untuk jumlah sampel sampel yang relatif besar, maka langkah-langkah yang dilakukan adalah sebagai berikut:
75
Konsistensi Jawaban Dalam penggunaan AHP, terdapat beberapa faktor yang dapat menyebabkan responden memberikan jawaban yang tidak konsisten, yaitu:
76
Konsistensi Jawaban
77
Perhitungan Rasio Konsistensi
AHP mentoleransi adanya inkonsistensi dengan menyediakan ukuran inkonsistensi penilaian. Ukuran ini merupakan salah satu elemen penting dalam proses penentuan prioritas berdasarkan pairwise comparison. Semakin besar rasio konsistensi, semakin tidak konsisten Rasio konsistensi yang acceptable adalah kurang dari atau sama dengan 10 persen, meskipun dalam kasus tertentu rasio konsistensi yang lebih besar dari 10 persen dapat dianggap acceptable. Untuk mengetahui apakah hasil penilaian bersifat konsisten, maka beberapa langkah untuk menghitung rasio inkonsitensi untuk menguji konsistensi penilaian.
78
Perhitungan Rasio Konsistensi
misalnya kita memiliki matriks perbandingan berikut:
79
Perhitungan Rasio Konsistensi
80
Perhitungan Rasio Konsistensi
81
Perhitungan Rasio Konsistensi
83
SEKIAN
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.