Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Proses Kedatangan dan Distribusi Waktu Pelayanan

Presentasi serupa


Presentasi berjudul: "Proses Kedatangan dan Distribusi Waktu Pelayanan"— Transcript presentasi:

1 Proses Kedatangan dan Distribusi Waktu Pelayanan
Tutun Juhana School of Electrical Engineering and Informatics Institut Teknologi Bandung

2 Before we proceed ... Full availability systems v.s.
Limited availability system

3 Full Availability System
Jika setiap inlet pada suatu sistem switching dapat dihubungkan dengan seluruh outlet maka sistem disebut Full Availability System Bahasa Indonesia pliiisss Full Availability System = Berkas sempurna Puas ?! .... Puas ....?!

4 Contoh berkas sempurna (pada selektor)
1 Berkas masuk 2 3 4 5 Setiap saluran keluar 1,2,3,4,5 dapat dicapai oleh setiap saluran masuk m

5 Limited Availability System
Pada sistem ini tidak setiap inlet pada suatu sistem switching dapat dihubungkan dengan seluruh outlet Limited Availability System = Berkas tidak sempurna

6 Berkas tak sempurna 1 2 I 3 (½)m 4 5 Berkas masuk 6 7 II (½)m
Saluran1 &2 tak dapat dicapai oleh saluran dari sub- berkas II 1 2 I 3 (½)m 4 5 Berkas masuk 6 7 II Saluran 6 &7 tak dapat dicapai oleh saluran dari sub- berkas I (½)m

7 Another things.... Markov Property (Memoryless Property) X
x+t t Gambar di atas memperlihatkan suatu fenomena, misalnya waktu pelayanan, yang berawal dari saat t=0 Jika X terdistribusi ekpsponensial dengan rata-rata m-1, peluang fenomena itu akan berkelanjutan sampai saat t=x adalah P{X > x} = e-mx Andrey Andreyevich Markov Born in Russia : June 14, 1856 Died in Russi: July 20, 1922 Institution :St Petersburg University

8 Peluang fenomena itu berlangsung terus setelah perioda waktu t, dengan syarat fenomena itu telah berlangsung sampai dengan x adalah sbb: X x x+t t Perhatikan bahwa nilai peluang di atas sudah tidak tergantung waktu x lagi Maka dapat disimpulkan bahwa perilaku stokastik fenomena di masa datang (setelah waktu x) hanya tergantung pada kondisi pada saat x (sekarang) dan tidak tergantung pada proses masa lalu sebelum x Karakteristik ini disebut Markov Property atau memoryless property Catatan: hanya distribusi eksponensial yang memiliki karakteristik ini pada distribusi kontinunya

9 Kita lihat kembali model antrian
Dua hal penting yang perlu diperhatikan: Bagaimana pola kedatangan panggilan ke dalam sistem? Bagaimana cara mendeskripsikan proses pelayanan?

10 Sumber Kedatangan Poisson
Pola kedatangan Dalam sistem antrian, customers datang untuk memperoleh layanan Customer (biasanya) datang secara acak (random) Untuk keperluan pembahasan, mari kita nyatakan customer sebagai jobs Contoh jobs adalah panggilan telepon, paket data, atau computer jobs untuk dikompilasi dan dieksekusi oleh suatu komputer Berikut ini contoh kedatangan job yang acak dan direkam berdasarkan waktu

11

12 Berdasarkan teori proses stokastik (birth and death process), untuk menganalisa sumber yang membangkitkan jobs secara acak digunakan tiga asumsi berikut: Asumsi pertama: Dalam selang waktu yang sangat singkat ∆t, peluang kedatangan job dalam selang waktu ini sebanding ∆t Sehingga peluang sebuah job datang dalam ∆t dapat dinyatakan oleh P = λ∆t λ adalah konstan Asumsi kedua: Peluang adanya lebih dari satu kedatangan dalam selang ∆t diabaikan(= 0) Akibatnya hanya ada dua kemungkinan yang terjadi di dalam selang ∆t yaitu datang satu job atau tidak ada kedatangan Asumsi ketiga: Di dalam selang ∆t, baik ada atau tidak ada kedatangan, tidak tergantung (independent) pada kedatangan dalam selang waktu lainnya

13 Distribusi Poisson Mari kita gunakan ketiga asumsi tadi dalam menentukan peluang munculnya k kedatangan di dalam interval T (PT(k)) Interval T dibagi ke dalam n time slot yang lebarnya sama Setiap time slot memiliki durasi selama ∆t =T/n Jika n sangat besar, maka ∆t akan sangat kecil dan peluang munculnya kedatangan dalam suatu time slot adalah λ∆t

14 Kita perhatikan event k kedatangan di dalam selang waktu T:
k kedatangan akan menduduki sebanyak tepat k time slot, masing-masing dengan peluang λ∆t Sisa time slot sebanyak (n-k) akan tidak mengandung kedatangan, dengan peluang masing-masing sebesar (1 − λ∆t) Maka akan terdapat sebanyak nCk kemungkinan kombinasi Catatan : nCk = Dan n! = n.(n-1)…2.1

15 Maka peluang terjadinya event tersebut tadi dinyatakan oleh
PT( k ) = nCk ( λ∆t )k ( 1 − λ∆t )( n − k ) Ini adalah distribusi binomial Jika n menuju tak hingga (), maka distribusi binomial akan sama dengan Dalam statistik, distribusi peluang di atas disebut distribusi Poisson Distribusi Poisson memiliki dua parameter yaitu k dan T

16 Jika T tetap,maka PT(k) adalah distribusi probabilitas dari jumlah job yang datang di dalam selang waktu T Sebuah sumber yang memiliki karakteristik berdasarkan tiga asumsi yang lalu dan yang distribusi peluangnya, PT(k), disebut sumber dengan kedatangan Poisson Berbicara tentang distribusi probabilitas, jika T tetap maka notasi T dapat dihilangkan sehingga PT(k) dapat ditulis dengan P(k) saja (awas, T nya tetap muncul pada persamaan)

17 Berikut ini penggambaran distribusi Poisson untuk beberapa jumlah kedatangan rata-rata yang berbeda selama waktu T dan λT yang tetap

18 Untuk setiap distribusi probabilitas, penjumlahan seluruh peluang akan sama dengan 1
Dengan manipulasi matematis kita akan peroleh bahwa Dengan demikian, P(k) adalah betul-betul suatu fungsi distribusi probabilitas

19 Untuk menentukan jumlah rata-rata kedatangan di dalam selang waktu T, kita gunakan rumus ekspektasi
Maka akan diperoleh jumlah rata-rata kedatangan di dalam selang waktu T adalah : Expectation

20 Dengan demikian, di dalam selang waktu T, rata-rata sebanyak λT jobs datang
Maka jumlah kedatangan jobs rata-rata per satuan waktu adalah λT/T= λ Sehingga arti fisis untuk parameter λ adalah laju kedatangan sumber dalam satuan jobs per satuan waktu; misalnya laju kedatangan customers per detik, laju kedatangan paket per menit, laju kedatangan panggilan per jam dsb..

21 Probability density function (pdf) dari selang waktu antar kedatangan (Inter-arrival time pdf)
Paramater penting lain dari kedatangan jobs adalah selang waktu antar kedatangan (inter-arrival time) t, yang didefinisikan sebagai durasi selang waktu antar dua kedatangan yang berurutan inter-arrival time adalah suatu peubah acak kontinu yang nilai eksak-nya tidak dapat ditentukan secara praktis Dalam praktis, kita hanya dapat mengatakan bahwa inter-arrival time terletak di antara t dan t+∆t Jika ∆t sangat singkat (∆t→0), maka pernyataan di atas sama saja dengan menyatakan bahwa inter-arrival time adalah sama dengan t

22 Inter-arrival time diilustrasikan di bawah ini:
Karena merupakan peubah acak kontinu, inter-arrival time t dinyatakan oleh suatu probability density function (pdf) p(t):

23 Untuk menurunkan pdf,p(t), bagi sumber kedatangan Poisson, kita perhatikan bahwa untuk suatu selang waktu yang sangat singkat ∆t, p(t)∆t menunjukkan peluang inter-arrival time memiliki harga di antara t dan t + ∆t Peluang ini sama dengan peluang [ tidak ada kedatangan di dalam selang waktu (o,t)] × peluang [ tepat ada satu kedatangan di dalam selang waktu (t, t+∆t)] Dengan memakai hasil distribusi Poisson, peluang tersebut di atas sama dengan e− λt × λ∆t Dengan demikian, pdf dari inter-arrival time dinyatakan oleh atau Maka pdf dari inter-arrival time adalah merupakan distribusi eksponensial negatif

24 Rata-rata inter-arrival time dapat dihitung sebagai berikut :
Hasil ini diperoleh dari karakteristik sumber kedatangan Poisson yang memiliki laju kedatangan rata-rata λ jobs per satuan waktu

25 Beberapa sifat kedatangan Poisson
Sifat 1 : Aggregation & Decomposition Aggregation Jika A1(t) dan A2(t) merupakan dua proses Poisson yang independent dan masing-masing memiliki intensitas l1 dan l2 maka penjumlahan proses A1(t) + A2(t) merupakan proses Poisson dengan intensitas l1+ l2 Decomposition Jika suatu aliran Poisson dengan rate l diarahkan secara langsung ke rute j dengan peluang pj maka aliran di rute j akan Poisson juga l1 p1l . . l2 p2l l l ln pnl Aggregation Decomposition

26 Beberapa sifat kedatangan Poisson (contd.)
PASTA Misalkan ada suatu model teletraffic yang sederhana dan stabil dengan kedatangan Poisson Misalkan pula X(t) menyatakan kondisi sistem pada waktu t (continuous-time process) dan Yn menyatakan kondisi sistem yang dilihat oleh pelanggan ke-n yang datang (discrete-time process); Maka distribusi stasioner X(t) akan sama dengan distribusi stasioner Yn Maka kita dapat katakan bahwa jobs yang datang melihat sistem di dalam keadaan stasioner atau Poisson Arrivals See Time Averages (PASTA) PASTA hanya berlaku untuk kedatangan Poisson

27 Mari kita bahas proses pelayanan

28 Distribusi waktu pelayanan (Service time distribution)
Service time merupakan sebuah peubah acak kontinu dan bervariasi dari satu job ke job yang lain Asumsi yang biasa diambil adalah service time memiliki karakteristik yang sama dengan sumber kedatangan Poisson Kita dapat mengasumsikan bahwa peluang sebuah job tertentu selesai dilayani di dalam selang waktu antara t dan t + ∆t adalah sebanding dengan ∆t dan tidak tergantung pada t Peluang ini dinyakan oleh :P = µ∆t Dimana µ adalah konstan

29 Serupa dengan penanganan pada sumber kedatangan Poisson, pdf service time dapat diturunkan sebagai :
p( t ) = µe−µt (fungsi distribusi ekpsonensial negatif) Dengan menggunakan ekpresi pdf di atas, service time rata-rata dapat dihitung sebagai berikut : Service rate rata-rata adalah µ jobs/sec Maka parameter µ memiliki arti fisis yaitu laju pelayanan rata-rata (average service rate) dari server


Download ppt "Proses Kedatangan dan Distribusi Waktu Pelayanan"

Presentasi serupa


Iklan oleh Google