Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

PERAMALAN DAN PERENCANAAN AGREGAT

Presentasi serupa


Presentasi berjudul: "PERAMALAN DAN PERENCANAAN AGREGAT"— Transcript presentasi:

1 PERAMALAN DAN PERENCANAAN AGREGAT

2 POKOK BAHASAN PENGERTIAN PERAMALAN PENTINGNYA STRATEGI PERAMALAN
TUJUH LANGKAH DALAM PERAMALAN PENDEKATAN PERAMALAN

3 PERAMALAN ? seni dan ilmu pengetahuan dalam memprediksi peristiwa di masa yang akan datang (menggunakan data historis,mis: penjualan tahun lalu) Sales will be $200 Million!

4 PERAMALAN ? Menggunakan data historis,mis: penjualan tahun lalu.
Menggunakan model matematika Bersifat subjektif dan intuitif (Mis: “ini adalah produk baru yang hebat dan akan terjual sebanyaknya 20% lebih daripada yang telah ada”) Di dorong oleh adanya permintaan (demand) Sales will be $200 Million!

5 PERAMALAN ? Menggunakan data historis,mis: penjualan tahun lalu.
Menggunakan model matematika Bersifat subjektif dan intuitif (Mis: “ini adalah produk baru yang hebat dan akan terjual sebanyaknya 20% lebih daripada yang telah ada”) Di dorong oleh adanya permintaan (demand) Dipengaruhi oleh posisi produk (Apakah produk berada pada tahap perkenalan, pertumbuhan, kedewasaan atau penurunan)

6 HORIZON WAKTU PERAMALAN
PERAMALAN JANGKA PENDEK 1 TAHUN ATAU KURANG DARI 3 BULAN PERENCANAAN PEMBELIAN, PENJADWALAN PEKERJAAN, LEVEL ANGKATAN KERJA, PENUGASAN PEKERJAAN, LEVEL PRODUKSI PERAMALAN JANGKA MENENGAH 3 BULAN SAMPAI 3 TAHUN PERENCANAAN PENJUALAN, PERENCANAAN PRODUKSI DAN PENGANGGARAN, PENGANGGARAN UANG KAS, ANALISIS VARIASI RENCANA OPERASIONAL PERAMALAN JANGKA PANJANG 3 TAHUN ATAU LEBIH PERENCANAAN PRODUK BARU, PENGELUARAN MODAL. LOKASI TEMPAT FASILITAS ATAU PERLUASAN, PENELITIAN DAN PENGEMBANGAN At this point, it may be useful to point out the “time horizons” considered by different industries. For example, some colleges and universities look 30 to fifty years ahead, industries engaged in long distance transportation (steam ship, railroad) or provision of basic power (electrical and gas utilities, etc.) also look far ahead (20 to 100 years). Ask them to give examples of industries having much shorter long-range horizons.

7 TIPE PERAMALAN PERAMALAN EKONOMI (Economic Forecast)
SIKLUS BISNIS, MISAL TINGKAT INFLASI, UANG YANG BEREDAR, PEMBANGUNAN PERUMAHAN. PERAMALAN TEKNOLOGI (Techological Forecast) TINGKAT PERKEMBANGAN TEKNOLOGI PRODUK BARU YANG LEBIH MENARIK PERAMALAN PERMINTAAN (Demand Forecast) PERAMALAN TERHADAP PENJUALAN PRODUK ATAU JASA PERUSAHAAN UNTUK MASING-MASING PERIODE WAKTU DALAM HORIZON PERENCANAAN DAN DIHASILKAN DARI PARA PENGECER MENGENAI PILIHAN KONSUMEN (DATA POIN PENJUALAN/POS) One can use an example based upon one’s college or university. Students can be asked why each of these forecast types is important to the college. Once they begin to appreciate the importance, one can then begin to discuss the problems. For example, is predicting “demand” merely as simple as predicting the number of students who will graduate from high school next year (i.e., a simple counting exercise)? PERAMALAN EKONOMI DAN TEKNOLOGI MERUPAKAN TEKNIK KHUSUS YANG AKAN BERADA DILUAR PERANAN MANAJER OPERASIONAL. FOKUS KITA HANYA PADA PERAMALAN PERMINTAAN

8 © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J. 07458
PERAMALAN PERMINTAAN URGENSI : PERAMALAN HANYA MERUPAKAN ESTIMASI ATAS PERMINTAAN HINGGA PERMINTAAN AKTUAL MENJADI DIKETAHUI. DAMPAK PERAMALAN PERMINTAAN PRODUK PADA 3 AKTIVITAS : MANAJEMEN RANTAI PASOKAN SDM KAPASITAS © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J

9 MANAJEMEN RANTAI PASOKAN
Hubungan yag baik dengan pasokan dan menjamin keuggulan dalam inovasi produk, biaya, dan kecepatan pada pangsa pasar bergantung pada peramalan yang akurat. Toyota mengembangkan peramalan mobil secara canggih dengan input dari berbagai sumber, termasuk dealer. Akan tetapi meramalkan permintaan aksesoris (roda, spoiler, sistem navigasi) adalah sangat sulit dan terdapat lebih dari barang yang berbeda. Sebagai hasilnya, Toyota tidak hanya meninjau ulang tumpukan data yang mengacu pada kendaraan yang telah diproduksi dan dijual, tetapi juga melihat dengan melihat dengan terperinci pada peramalan kendaraan sebelum membuat pertimbangan mengenai permintaan aksesoris pada masa yang akan datang. © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J

10 © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J. 07458
SUMBER DAYA MANUSIA Perekrutan, pelatihan, penempatan dan pemberhentian pekerja bergantung pada permintaan. Jika departemen HRD harus memperkerjakan pekerjaan tambahan tanpa adanya persiapan dan pemberitahuan, akibatnya penurunan pada kualitas pelatihan dan kualitas pekerja. Perusahaan kimia di Louisiana hampir kehilangan konsumen terbesarnya saat melakukan ekspansi yang memberlakukan giliran kerja tanpa henti selama 24 jam yang yang mengakibatkan rendahnya pengendalian kualitas pada pergantian giliran kerja kedua dan ketiga © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J

11 © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J. 07458
KAPASITAS Saat kapasitas tidak mencukupi atau memadai yang dapat mengarah pada kehilangan konsumen dan pangsa pasar Nabisco melakukan kesalahan perhitungan terlalu rendah dalam permintaan biskuit baru “Snackwell Devil’s Food yang rendah kalori ternyata permintaannya sangat besar. Dengan berkerja lembur, Nabisco bahkan tidak dapat memenuhi permintaan dan kehilangan konsumen. Namun jika kapasitas dibangun berlebihan, biaya dapat melonjak tajam © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J

12 © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J. 07458
MRP : HUBUNGAN YANG BAIK DENGAN PEMASOK DAN MENJAMIN KEUNGGULAN DALAM INOVASI PRODUK, BIAYA DAN KECEPATAN PADA PANGSA PASAR BERGANTUNG PADA PERAMALAN YANG AKURAT SDM : PERENGKRUTAN, PELATIHAN, DAN PENEMPATAN PARA PEKERJA SEMUANYA BERGANTUNG PADA PERMINTAAN YANG DIANTISIPASI KAPASITAS : KETIKA KAPASITAS TIDAK MEMADAI, MENGHASILKAN KEKURANGAN YANG DAPAT MENGARAHKAN PADA KEHILANGAN PARA KONSUMEN DAN PANGSA PASAR PERSYARATAN PERAMALAN : TEPAT WAKTU AKURAT DAPAT DIANDALKAN RASIONAL DALAM JUMLAH DILAKUKAN SECARA TERTULIS RAMALAN SEDERHANA UNTUK DIPAHAMI DAN DIGUNAKAN BIAYA YANG SELEKTIF © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J

13 TUJUH LANGKAH DALAM SISTEM PERAMALAN
MENENTUKAN PENGGUNAAN DARI PERAMALAN MEMILIH BARANG YANG AKAN DIRAMALKAN MENENTUKAN HORIZON WAKTU DARI PERAMALAN MEMILIH MODEL PERAMALAN MENGUMPULKAN DATA YANG DIPERLUKAN UNTUK MEMBUAT PERAMALAN MEMBUAT PERAMALAN MEMVALIDASI DAN MENGIMPLEMENTASIKAN HASILNYA © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J

14 TUJUH LANGKAH DALAM SISTEM PERAMALAN
MENENTUKAN PENGGUNAAN DARI PERAMALAN Word Disney menggunakan peramalan kehadiran pengunjung untuk pengambilan keputusan mengenai jumlah pegawai, waktu pembukaan, ketersediaan arena bermain, dan pasokan makanan. MEMILIH BARANG YANG AKAN DIRAMALKAN Mempunyai 6 wahana bermain dan meramalkan kehadiran setiap hari pengunjung utk menentukan tenaga kerja, pemeliharaan dan penjadwalan MENENTUKAN HORIZON WAKTU DARI PERAMALAN Peramalan harian, mingguan, bulanan dan tahunan © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J

15 TUJUH LANGKAH DALAM SISTEM PERAMALAN
MEMILIH MODEL PERAMALAN Pergerakan rata-rata, ekonometrik dan analisis regresi MENGUMPULKAN DATA YANG DIPERLUKAN UNTUK MEMBUAT PERAMALAN Memperkerjakan 35 analis dan 70 personel lapangan utk melakukan survei 1 juta orang/tahun. Global Insights utk peramalan perjalanan wisata ke USA, maskapai penerbangan, kecenderungan saham Wall Street, dan jadwal liburan. MEMBUAT PERAMALAN MEMVALIDASI DAN MENGIMPLEMENTASIKAN HASILNYA Peninjauan ulang secara harian utk memastikan bahwa model, asumsi dan data adalah valid.

16 © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J. 07458
PENDEKATAN PERAMALAN PERAMALAN KUANTITATIF Menggunakan model-model matematika yang bergantung pada data historis dan/variabel asosiatif (sebab-akibat) untuk meramalkan permintaan. PERAMALAN KUALITATIF/SUBJEKTIF Menggabungkan faktor-faktor, seperti instuisi, pengalaman pribadi © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J

17 TEKNIK PERAMALAN RAMALAN BERDASARKAN PENILAIAN & OPINI
RAMALAN YANG MENGGUNAKAN INPUT-INPUT SUBJEKTIF SEPERTI OPINI DARI SURVEI KONSUMEN, STAF PENJUALAN, MANAJER, EKSEKUTIF DAN AHLI RAMALAN DERET BERKALA RAMALAN YANG MEMPROYEKSIKAN POLA YANG DIIDENTIFIKASI PADA OBSERVASI DERET BERKALA PADA WAKTU TERBARU (Laporan pendapatan perkuartal dari saham Microsoft atau indek harga konsumen tahunan) MODEL ASOSIATIF MODEL PERAMALAN YANG MENGGUNAKAN VARIABEL PENJELAS UNTUK MEMPREDIKSI PERMINTAAAN MASA DEPAN

18 RAMALAN BERDASARKAN PENILAIAN DAN OPINI
OPINI EKSEKUTIF SEBUAH TEKNIK PERAMALAN YANG MENGGUNAKAN OPINI SEKELOMPOK KECIL DARI PARA MANAJER MUMPUNI UNTUK MEMBUAT SEKUMPULAN ESTIMASI PERMINTAAN OPINI TENAGA PENJUALAN SEBUAH TEKNIK PERAMALAN YANG BERDASARKAN PADA ESTIMASI WIRANIAGA TERHADAP PENJUALAN YANG DIHARAPKAN SURVEI KONSUMEN SEBUAH METODE PERAMALAN YANG MEMINTA INPUT DARI PARA PELANGGAN ATAU PELANGGAN POTENSIAL YANG MEMPERHATIKAN RENCANA PEMBELIAN PADA MASA DEPAN METODE DELPHI SEBUAH TEKNIK PERAMALAN YANG MENGGUNAKAN SEKELOMPOK PROSES YANG MEMPERBOLEHKAN PARA AHLI UNTUK MEMBUAT PERAMALAN (si pengambil keputusan, staf personalia dan para responden) © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J

19 RAMALAN DIDASARKAN PADA DATA DERET BERKALA
TREND (Kecenderugan), PERGERAKAN DATA JANGKA PANJANG KE ATAS ATAU KE BAWAH (PERGESERAN POPULASI, PERUBAHAN PENDAPATAN, PERUBAHAN BUDAYA) SEASONALITY (Musiman), MENGACU PADA VARIASI TERATUR JANGKA PENDEK SECARA WAJAR YANG BIASANYA BERKAITAN DENGAN FAKTOR-FAKTOR SEPERTI KALENDER ATAU WAKTU DALAM HARI. CYCLE (Siklus), VARIASI BERBENTUK GELOMBANG DENGAN JANGKA WAKTU LEBIH DARI SATU TAHUN RANDOM VARIATIONS (Variasi acak), DISEBABKAN KONDISI-KONDISI TIDAK BIASA SEPERTI KONDISI CUACA PARAH, SERANGAN, ATAU PERUBAHAN UTAMA PADA PRODUK ATAU JASA. © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J

20 © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J. 07458
Variabel Tren Berkelanjutan, berpola meningkat atau menurun secara keseluruhan Populasi, technology dll. Waktunya hanya beberapa tahun Time Response © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J

21 © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J. 07458
Seasonal Component Kenaikan perpola tetap & penurunan berfluktuasi Musim, perilaku/kebiasaan etc. Summer Response Time © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J

22 © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J. 07458
Cyclical Component Pergerakan peningkatann dan penurunan terjadi secara berulang-ulang Dipengaruhi faktor ekonomi Biasanya berkisar 2-10 tahun Cycle Response Time © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J

23 Product Demand ...PENDEKATAN AWAM (NAIVE APPROACH)
KOMPONEN KECENDRUNGAN PUNCAK MUSIMAN Garis permintaan aktual Permintaan untuk produk aatau jasa Permintaan rata-rata selama lebih dari 4 tahun This slide illustrates a typical demand curve. You might ask students why it is important to know more than simply the actual demand over time. Why, for example, would one wish to be able to break out a “seasonality” factor? Variasi acak Year 1 Year 2 Year 3 Year 4 © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J

24 RUMUSAN PERAMALAN DIBAWAH INI....................... .....
© 2004 by Prentice Hall, Inc., Upper Saddle River, N.J

25 Simple Moving Average / PERGERAKAN RATA-RATA
n Permintaan dalam perode n sebelumnya sebuah metode peramalan yang menggunakan rata-rata dari periode yang terkini n terhadap data untuk meramal periode selanjutnya ft = ramalan untuk periode waktu t at-1 = nilai aktual pada periode t – 1 n = jumlah periode (titik data) dalam rata-rata bergerak F = A A A A F = A A A t t– t– t– t–4 t t– t– t–3 4 3 At this point, you might discuss the impact of the number of periods included in the calculation. The more periods you include, the closer you come to the overall average; the fewer, the closer you come to the value in the previous period. What is the tradeoff? © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J

26 © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J. 07458
Contoh Bulan Penjualan aktual gudang Pergerakan rata-rata 3 bulanan PERAMALAN Januari 10 Februari 12 Maret 13 April 16 ( )/3 = 11 2/3 Mei 19 DST Juni 23 Juli 26 Agustus 30 September 28 Oktober 18 November Desember 14 © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J

27 Weighted Moving Average (RATA-RATA BOBOT)
Σ (Weight for period n) (Demand in period n) Σ Weights WMA = F = .4A A A A F = .7A A A t t– t– t– t–4 t t– t– t–3 This slide introduces the “weighted moving average” method. It is probably most important to discuss choice of the weights. © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J

28 Penjualan aktual gudang Pergerakan rata-rata 3 bulanan
CONTOH Bulan Penjualan aktual gudang Pergerakan rata-rata 3 bulanan PERAMALAN Januari 10 Februari 12 Maret 13 April 16 (3X13)+(2X12)+(10) / 6= 12 1/6 Mei 19 (3X16)+(2X13)+(12) / 6= 14 1/3 Juni 23 DST Juli 26 Agustus 30 September 28 Oktober 18 November Desember 14

29 KEDUA PERAMALAN DIATAS, MENYAJIKAN 3 PERMASALAHAN
Meningkatkan Ukuran N (Jumlah periode yang dirata-rata) yang melancarkan fluktuasi dengan lebih baik, tetapi membuat metode menjadi sedikit senstitif pada perubahan dalam data. Pergerakan rata-rata tidak dapat mengambil kecendrungan dengan sangat bagus, karena mereka dalam rata-rata, mereka akan selalu tetap ada di dalam level sebelumnya dan tidak akan memprediksikan perubahan level yang lebih tinggi atau lebih rendah mereka meninggalkan nilai aktual Pergerakan rata-rata memerlukan catatan data masa sebelumnya yang ekstensif

30 Exponential Smoothing Method Metode penghalusan eksponensial
Metode peramalan pergerakan rata-rata bobot lainnya atau teknik peramalan dimana poin-poin data ditimbang oleh sebuah fungsi eksponensial Form of weighted moving average Weights decline exponentially Most recent data weighted most Requires smoothing constant () Ranges from 0 to 1 Subjectively chosen Involves little record keeping of past data © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J. 7458

31 Exponential Smoothing
Forecast =  (Demand last period)+ (1 –  ) ( Last forecast) Peramalan Baru = peramalan periode sebelumnya +  (Permintaan aktual periode sebelumnya – peramalan periode sebelumnya) F =  A (1 – ) (F ) =  A F –  F = F  (A – F ) t t– t–1 t– t– t–1 t– t– t–1 You may wish to discuss several points: - this is just a moving average wherein every point in included in the forecast, but the weights of the points continuously decrease as they extend further back in time. - the equation actually used to calculate the forecast is convenient for programming on the computer since it requires as data only the actual and forecast values from the previous time point. - we need a formal process and criteria for choosing the “best” smoothing constant. Forecast = Last forecast  (Last demand – Last forecast)

32 Exponential Smoothing with Trend Adjustment
Forecast = Exponentially smoothed forecast (F ) Exponentially smoothed trend (T ) t t Tt =  (Forecast this period – Forecast last period) + (1-) (Trend estimate last period) = (Ft - Ft-1) + (1- )Tt-1 © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J

33 Seasonal Variation Seasonal Index = Actual Demand Average Demand
Quarter Year 1 Year 2 Year 3 Year 4 Total Average Seasonal Index = Actual Demand Average Demand = = 0.18 45 250 Forecast for Year 5 = 2600

34 Seasonal Variation Quarter Average Seasonal Index Forecast
Quarter Year Year Year Year 4 1 45/250 = /300 = /450 = /550 = 0.18 2 335/250 = /300 = /450 = /550 = 1.32 3 520/250 = /300 = /450 = /550 = 2.11 4 100/250 = /300 = /450 = /550 = 0.39 Quarter Average Seasonal Index 1 ( )/4 = 0.20 2 ( )/4 = 1.30 3 ( )/4 = 2.00 4 ( )/4 = 0.50 Forecast 650(0.20) = 650(1.30) = 650(2.00) = 1300 650(0.50) =

35 Linear Regression Factors Associated with Our Sales Sales
Advertising Pricing Competitors Economy Weather Sales Independent Dependent Variables Variable

36 y= a+bx TREND PROJECTION PROYEKSI KECENDRUNGAN
Sebuah Metode Peramalan Runtun Waktu Mencocokan Sebuah Garis Kecendrungan Untuk Urutan Poin Data Historis Dan Kemudian Memproyeksikan Garis Ke Dalam Peramalan Pada Masa Mendatang. Oleh karena itu metode yang digunakan untuk mengukur garis kecendrungan linear dengan metode kuadrat kecil. Metode tersebut dapat dilihat pada persamaan berikut ini : y= a+bx

37 Scatter Diagram Now What? Sales vs. Payroll 1 2 3 4 5 6 7 8 4
Regression Line 3 Sales (in $ hundreds of thousands) Now What? 2 1 1 2 3 4 5 6 7 8 Area Payroll (in $ hundreds of millions)

38 Types of Forecasts by Time Horizon
Short-range forecast Up to 1 year; usually less than 3 months Job scheduling, worker assignments Medium-range forecast 3 months to 3 years Sales & production planning, budgeting Long-range forecast 3+ years New product planning, facility location Time Series Associative Qualitative At this point, it may be useful to point out the “time horizons” considered by different industries. For example, some colleges and universities look 30 to fifty years ahead, industries engaged in long distance transportation (steam ship, railroad) or provision of basic power (electrical and gas utilities, etc.) also look far ahead (20 to 100 years). Ask them to give examples of industries having much shorter long-range horizons.

39 © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J. 07458
Forecast Error This slide illustrates both possible patterns in forecast error, and the merit of making a scatter plot of forecast error. © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J

40 © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J. 07458
Forecast Error E = A – F t t t + 5 – 3 © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J

41 © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J. 07458
Forecast Error - CFE CFE =  Et CFE – Cumulative sum of Forecast Errors Positive errors offset negative errors Useful in assessing bias in a forecast © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J

42 © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J. 07458
Forecast Error - MSE MSE – Mean Squared Error MSE =  Et n 2 Accentuates large deviations © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J

43 Forecast Error - MAD  |Et | MAD = MAD – Mean Absolute Deviation n
Widely used, well understood measurement of forecast error

44 Forecast Error - MAPE MAPE – Mean Absolute Percent Error
100  |Et | / At n Relates forecast error to the level of demand

45 Forecast Error  |Et | Et = At – Ft CFE =  Et MSE =  Et n MAD = n
2  |Et | n MAD = 100  |Et | / At n MAPE =

46 Monitoring & Controlling Forecasts
We need a TRACKING SIGNAL to measure how well the forecast is predicting actual values TS = Running sum of forecast errors (CFE) Mean Absolute Deviation (MAD) =  E  | E | / n t t © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J

47 Plot of a Tracking Signal
Signal exceeded limit Tracking signal CFE / MAD Upper control limit + Acceptable range - Lower control limit This slide illustrates a graph of a tracking signal form a “practical” problem. Time © 2004 by Prentice Hall, Inc., Upper Saddle River, N.J

48 Forecasting in the Service Sector
Presents unusual challenges special need for short term records needs differ greatly as function of industry and product issues of holidays and calendar unusual events This slide simply raises a few of the forecasting issues peculiar to services.

49 Forecast of Sales by Hour for Fast Food Restaurant

50 © 2015 by Prentice Hall, Inc., Upper Saddle River, N.J. 07458
Summary Demand forecasts drive a firm’s plans - Production - Capacity - Scheduling Need to find the forecasting method(s) that best fit our pattern of demand – no one right tool - Qualitative methods e.g. customer surveys - Time series methods (quantitative) rely on historical demand to predict future demand - Associative models (quantitative) use historical data on independent variables to predict demand e.g. promotional campaign Track forecast error to determine if forecasting model requires change © 2015 by Prentice Hall, Inc., Upper Saddle River, N.J


Download ppt "PERAMALAN DAN PERENCANAAN AGREGAT"

Presentasi serupa


Iklan oleh Google