Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

MODEL TRANSPORTASI.

Presentasi serupa


Presentasi berjudul: "MODEL TRANSPORTASI."— Transcript presentasi:

1 MODEL TRANSPORTASI

2 Model Transportasi Model transportasi merupakan bagian dari program linear. Tujuan dari model transportasi ini adalah untuk mengoptimalkan jumlah pengiriman ke tujuan dalam sekali pengiriman, sehingga dapat menekan biaya serendah mungkin atau mencapai jumlah laba yang maksimal. Program linear adalah suatu model umum yang jamak dipakai untuk menyelesaikan masalah pengalokasian sumber daya yang terbatas secara optimal, mencangkup perencanaan kegiatan-kegiatan yang akan dilakukan dengan menggunakan anggapan-anggapan hubungan linear, untuk mencapai hasil yang maksimal.

3 Model transportasi merupakan kasus khusus dari masalah program linear dengan tujuan untuk mengangkut barang tunggal (1 jenis) dari berbagai asal (origin) ke berbagai tujuan (destination), dengan biaya angkut serendah mungkin.

4 Metode Transportasi Tabel Awal Tabel Optimum
a. Aturan NWC (Nort West Corner) b. Metode INSPEKSI (Ongkos terkecil) c. Metode VAM (Vogel Approkximation Method) Tabel Optimum d. Metode Steppingstone (batu loncatan) e. Metode MODI (Modified Distribution)

5 Keterangan: Ai = Daerah asal sejumlah i Si = Supply, Ketersediaan barang yang diangkut di i daerah asal Tj = Tempat tujuan sejumlah j dj = Permintaan (demand) barang di sejumlah j tujuan xij = Jumlah barang yang akan diangkut dari Ai ke Tj cij = Besarnya biaya transport untuk 1 unit barang dari Ai ke Tj Biaya transport = cij . xi Jumlah permintaan = Jumlah ketersediaan

6 a. METODE NWC (North West Corner)
Merupakan metode untuk menyusun tabel awal dengan cara mengalokasikan distribusi barang mulai dari sel yang terletak pada sudut paling kiri atas. Aturannya: Pengisian sel/kotak dimulai dari ujung kiri atas. (2) Alokasi jumlah maksimum (terbesar) sesuai syarat sehingga layak untuk memenuhi permintaan. (3) Bergerak ke kotak sebelah kanan bila masih terdapat suplai yang cukup. Kalau tidak, bergerak ke kotak di bawahnya sesuai demand. Bergerak terus hingga suplai habis dan demand terpenuhi.

7 Contoh Soal: Suatu perusahaan mempunyai 3 pabrik produksi dan 5 gudang penyimpanan hasil produksi. Jumlah barang yang diangkut tentunya tidak melebihi produksi yang ada sedangkan jumlah barang yang disimpan di gudang harus ditentukan jumlah minimumnya agar gudang tidak kosong. Tabel matriks berikut menunjukkan jumlah produksi paling banyak bisa diangkut, jumlah minimum yang harus disimpan di gudang dan biaya angkut per unit barang. Dalam smu (satuan mata uang):

8 Periksa dulu apakah Total Demand (TD) dengan Total Supply (TS) sama atau tidak.
Jika TD = TS, maka dikatakan Tabel Transportasi seimbang (equilibrium), jadi tidak perlu ada kolom dummy (tujuan dummy) maupun baris dummy (sumber dummy). Jika TD > TS, maka perlu diseimbangkan dengan menambahkan baris dummy (sumber dummy). Jika TD < TS atau TS > TD, maka perlu diseimbangkan dengan menambahkan kolom dummy atau tujuan dummy.

9 Gudang Pabrik G1 G2 G3 G4 G5 S P1 50 80 60 30 800 P2 40 70 600 P3 1100 D 400 500

10 Contoh : Pabrik Gudang G1 G2 G3 G4 G5 S P1 50 400 80 60 30 800 P2 40
70 500 100 600 P3 300 1100 D 2500

11 b. Metode Inpeksi (Matrik Minimum)
Merupakan metode untuk menyusun tabel awal dengan cara pengalokasian distribusi barang dari sumber ke tujuan mulai dari sel yang memiliki biaya distribusi terkecil Aturannya 1. Pilih sel yang biayanya terkecil 2. Sesuaikan dengan permintaan dan kapasitas 3. Pilih sel yang biayanya satu tingkat lebih besar dari sel pertama yang dipilih 4. Sesuaikan kembali, cari total biaya

12 Pabrik/ Gudang G1 G2 G3 G4 G5 S P1 50 80 60 30 800 P2 40 400 70 200 600 P3 500 1100 d 2500

13 c. Metode VAM (Vogel Approkximation Method )
Metode VAM lebih sederhana penggunaanaya, karena tidak memerlukan closed path (jalur tertutup). Metode VAM dilakukan dengan cara mencari selisih biaya terkecil dengan biaya terkecil berikutnya untuk setiap kolom maupun baris. Kemudian pilih selisih biaya terbesar dan alokasikan produk sebanyak mungkin ke sel yang memiliki biaya terkecil. Cara ini dilakukan secara berulang hingga semua produk sudah dialokasikan .

14 Prosedur Pemecahan: (1)  Hitung perbedaan antara dua biaya terkecil dari setiap baris dan kolom. (2)  Pilih baris atau kolom dengan nilai selisih terbesar, lalu beri tanda kurung. Jika nilai pada baris atau kolom adalah sama, pilih yang dapat memindahkan barang paling banyak. (3)  Dari baris/kolom yang dipilih pada (2), tentukan jumlah barang yang bisa terangkut dengan memperhatikan pembatasan yang berlakubagi baris atau kolomnya serta sel dengan biaya terkecil. (4)  Hapus baris atau kolom yang sudah memenuhi syarat sebelumnya (artinya suplai telah dapat terpenuhi). (5) Ulangi langkah (1) sampai (4) hingga semua alokasi terpenuhi.

15 Contoh Soal Pabrik/ Gudang G1 G2 G3 G4 G5 S P1 50 80 60 30 800 P2 40
70 600 P3 1100 d 400 500 50 – 30 = 20 50 – 40 = 10 40 – 40 = 0 400 = 10 70 – 40 = 30 60 – 60 = 0 60 – 60 = 0 40– 30= 10 Terbesar

16 Pabrik/ Gudang G1 G2 G3 G4 G5 S II P1 50 80 60 30 800 P2 40 70 600 P3
1100 (700) d 400 500 50-30= 20 800 50-40= 10 60-40= 20 400 50-40= 10 60-60= 0 60-60= 0 40-30= 10

17 Pabrik/ Gudang G1 G2 G3 G4 G5 S III P1 50 80 60 30 800 P2 40 70 600 P3
P2 40 70 600 P3 1100 (700) d 400 500 800 60-40= 20 400 200 60-60= 0 400 80-40= 40 70-60= 10 60-60= 10

18 Pabrik/ Gudang G1 G2 G3 G4 G5 S IV P1 50 80 60 30 800 P2 40 70 600
P2 40 70 600 (200) P3 1100 (700) d 400 500 800 70-60= 10 400 200 60-60= 0 400 500 200 70-60= 10 60-60= 10

19 Biaya Total = (400. 40) + (800. 30) + (400. 40) + (500. 60) + (200

20 d. Metode Steppingstone (batu loncatan)
Metode Stepping Stone adalah metode untuk mendapatkan solusi optimal masalah transportasi (TC yang minimum), metode ini bersifat trial and error, yaitu dengan mencoba-coba memindahkan sel yang ada isinya (stone) ke sel yang kosong (water). Tentu saja pemindahan ini harus mengurangi biaya, untuk itu harus dipilih sedemikian rupa sel-sel kosong yang biaya transportasinya kecil dan memungkinkan dilakukan pemindahan.

21 Contoh : Perusahaan memiliki tiga pabrik yang berlokasi di tiga kota yang berbeda dengan kapasitas produksi per bulan adalah : Pabrik A = 90, Pabrik B = 60, dan Pabrik C = 50. Perusahaan tersebut juga mempunyai tiga gudang penyimpanan hasil produksinya yang berlokasi di tiga kota yang berbeda dengan jumlah permintaan per bulan adalah : Gudang I = 50, Gudang II = 110, dan Gudang III = 40. Diketahui biaya transportasi dari setiap pabrik ke setiap Gudang adalah sebagai berikut :

22 Gudang I Gudang II Gudang III Pabrik A 20 5 8 Pabrik B 15 10 Pabrik C 25 19 Tentukan total biaya transportasi minimum dengan menggunakan metode Stepping Stone

23 Tentukan tabel Transportasi awal dengan NWC
Pabrik Gudang P1 P2 P3 S G1 20 50 5 40 8 90 G2 15 60 10 G3 25 19 D 110 200

24 e. Metode MODI (Modified Distribution)
Metode MODI (Modified Distribution) adalah metode untuk mendapatkan solusi optimal masalah transportasi (total biaya transportasi mínimum). Metode ini bersifat eksak dan juga disebut sebagai metode multiplier, karena dalam penghitungannya menggunakan multiplier, yaitu multiplier baris (ui) dan multiplier kolom (vj). Metode MODI menggunakan algoritma: Menentukan ui dan vj dengan memperhatikan basic variable, yaitu sel (kotak) yang ada isinya dan menggunakan rumus ui + vj = cij, Menentukan indeks perbaikan, yaitu dengan memperhatikan sel (kotak) yang kosong dan dengan menggunakan rumus Indeks Perbaikan = cij – ui – vj, Isilah sel kosong yang mempunyai Indeks Perbaikan negatif yang dimulai dari sel kosong dengan indeks perbaikan negatif terbesar. Ulangi langkah (1) s/d (3), jika Indeks Perbaikan telah positif semua berarti solusi optimal telah tercapai dan tidak ada sel kosong yang harus diisi.

25 Pabrik Gudang P1 P2 P3 S G1 20 50 5 40 8 90 G2 15 60 10 G3 25 19 D 110
v1 = v2 = v3 = 14 Pabrik Gudang P1 P2 P3 S G1 20 50 5 40 8 90 G2 15 60 10 G3 25 19 D 110 200 u1 = 0 u2 = 15 u3 = 5

26 Untuk menentukan multiplier ui dan vj, perhatikan sel yang ada isinya (basic var):
Sel 1 – 1: u1 + v1 = c11 → 0 + v1 = 20 → v1 = 20 Sel 1 – 2: u1 + v2 = c12 → 0 + v2 = 5 → v2 = 5 Sel 2 – 2: u2 + v2 = c22 → u2 + 5 = 20 → u2 = 15 Sel 3 – 2: u3 + v2 = c32 → u3 + 5 = 10 → u3 = 5 Sel 3 – 3: u3 + v3 = c33 → 5 + v3 = 19 → v3 = 14

27 Sel Kosong Indeks Perbaikan Sel 1 – 3 8 – 0 – 14 = – 6 Sel 2 – 1 15 – 15 – 20 = – 20 Sel 2 – 3 10 – 15 – 14 = – 19 Sel 3 – 1 25 – 5 – 20 = 0

28 Pabrik Gudang P1 P2 P3 S G1 20 5 60 8 30 90 G2 15 50 10 G3 25 19 D 110 40 200

29 Menghitung multiplier ui dan vj:
Sel 1 – 2: u1 + v2 = c12 → 0 + v2 = 5 → v2 = 5 Sel 1 – 3: u1 + v3 = c13 → 0 + v3 = 8 → v3 = 8 Sel 2 – 3: u2 + v3 = c23 → u2 + 8 = 10 → u2 = 2 Sel 2 – 1: u2 + v1 = c21 → 2 + v1 = 15 → v1 = 13 Sel 3 – 2: u3 + v2 = c32 → u3 + 5 = 10 → u3 = 5

30 Tabel Indeks Perbaikan:
Sel Kosong Indeks Perbaikan Sel 1 – 1 20 – 0 – 13 = 7 Sel 2 – 2 20 – 2 – 5 = 13 Sel 3 – 1 25 – 5 – 13 = 7 Sel 3 – 3 19 – 5 – 8 = 6 Dalam tabel tersebut tampak indeks perbaikan untuk semua sel kosong sudah positif semua, ini berarti bahwa solusi optimal telah tercapai. Jadi total biaya transportasi mínimum sesuai dengan tabel transportasi di atas adalah : TCmin = 60(5) + 30(8) + 50(15) + 10(10) + 50(10) = 1890


Download ppt "MODEL TRANSPORTASI."

Presentasi serupa


Iklan oleh Google