Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
Diterbitkan olehSri Susman Telah diubah "7 tahun yang lalu
1
Tri Rahajoeningroem,MT T. Elektro - UNIKOM
VEKTOR Tri Rahajoeningroem,MT T. Elektro - UNIKOM
2
Tujuan Pembelajaran Mahasiswa dapat memahami besaran vektor
Mahasiswa memahami dan dapat mengoperasikan besaran vektor Mahasiswa mampu menggunakan besaran vektor untuk memecahkan permasalahan dalam bidang medan elektromagnetik
3
Outline Definisi besaran vektor dan sklara
Cara menuliskan besaran vektor Operasi matematik vektor (penjumlahan dan perkalian) Sifat-sifat perkalian vektor Vektor satuan Analisa vektor
4
Besaran Skalar Besaran Vektor z y x BESARAN SKALAR DAN VEKTOR
Sifat besaran fisis : Skalar Vektor Besaran Skalar Besaran yang cukup dinyatakan oleh besarnya saja (besar dinyatakan oleh bilangan dan satuan). Contoh : waktu, suhu, volume, laju, energi Catatan : skalar tidak tergantung sistem koordinat Besaran Vektor z x y Besaran yang dicirikan oleh besar dan arah. Contoh : kecepatan, percepatan, gaya Catatan : vektor tergantung sistem koordinat
5
Besar vektor A = A= |A| (pakai tanda mutlak)
PENGGAMBARAN DAN PENULISAN (NOTASI) VEKTOR Gambar : P Q Titik P : Titik pangkal vektor Titik Q : Ujung vektor Tanda panah : Arah vektor Panjang PQ = |PQ| : Besarnya (panjang) vektor Besar vektor A = A= |A| (pakai tanda mutlak) Notasi Vektor A Huruf tebal Pakai tanda panah di atas A Huruf miring Catatan : Untuk selanjutnya pada handout ini notasi vektor yang digunakan huruf tebal Untuk penulisan dalam tugas dan ujian pakai tanda panah d atas
6
Catatan : a. Dua vektor sama jika arah dan besarnya sama A B A = B
b. Dua vektor dikatakan tidak sama jika : 1. Besar sama, arah berbeda B A A B 2. Besar tidak sama, arah sama A B A B 3. Besar dan arahnya berbeda A B A B
7
OPERASI MATEMATIK VEKTOR
Operasi jumlah dan selisih vektor Operasi kali JUMLAH DAN SELISIH VEKTOR Metode : Jajaran Genjang Segitiga Poligon Uraian 1. Jajaran Genjang + = A B -B R = A+B S = A-B R = A + B Besarnya vektor R = | R | = Besarnya vektor A+B = R = |R| = A + B + 2 AB cos θ 2 2 Besarnya vektor A-B = S = |S| = A + B - 2 AB cos θ 2 2
8
Jika vektor A dan B searah θ = 0o : R = A + B
Jika vektor A dan B berlawanan arah θ = 180o : R = A - B Jika vektor A dan B Saling tegak lurus θ = 90o : R = √(A2+B2) Catatan : Untuk Selisih (-) arah Vektor di balik 2. Segitiga + = A+B A B 3. Poligon (Segi Banyak) + = A B C D A+B+C+D
9
Vektor diuraikan atas komponen-komponennya (sumbu x dan sumbu y)
4. Uraian Vektor diuraikan atas komponen-komponennya (sumbu x dan sumbu y) Y A = Ax.i + Ay.j ; B = Bx.i + By.j Ax = A cos θ ; Bx = B cos θ Ay = A sin θ ; By = B sin θ A Ay B By Ax Bx X Besar vektor A + B = |A+B| = |R| Rx = Ax + Bx Ry = Ay + By |R| = |A + B| = Arah Vektor R (terhadap sb.x positif) = tg θ = θ = arc tg
10
PERKALIAN VEKTOR 1. Perkalian Skalar dengan Vektor 2. Perkalian vektor dengan Vektor Perkalian Titik (Dot Product) Perkalian Silang (Cross Product) 1. Perkalian Skalar dengan Vektor Hasilnya vektor k : Skalar A : Vektor C = k A Vektor C merupakan hasil perkalian antara skalar k dengan vektor A Catatan : Jika k positif arah C searah dengan A Jika k negatif arah C berlawanan dengan A k = 3, A C = 3A
11
2. Perkalian Vektor dengan Vektor
Perkalian Titik (Dot Product) Hasilnya skalar A B = C C = skalar θ A B B cos θ A cos θ Besarnya : C = |A||B| Cos θ A = |A| = besar vektor A B = |B| = besar vektor B Θ = sudut antara vektor A dan B
12
Sifat-sifat Perkalian Titik (Dot Product)
Komutatif : A B = B A Distributif : A (B+C) = (A B) + (A C) Catatan : Jika A dan B saling tegak lurus A B = 0 Jika A dan B searah A B = A B Jika A dan B berlawanan arah A B = - A B
13
Perkalian Silang (Cross Product)
Hasilnya vektor θ A B C = A x B C = B x A Catatan : Arah vektor C sesuai aturan tangan kanan Besarnya vektor C = A x B = A B sin θ Sifat-sifat : Tidak komutatif A x B B x A Jika A dan B saling tegak lurus A x B = B x A Jika A dan B searah atau berlawan arah A x B = 0 =
14
Vektor Product (Cross Product)
Dalam bentuk komponen vektor a b v Utk mengingat rumus di atas (ingat rumus determinan matrik)
15
Sifat-sifat Perkalian Titik (Dot Product) Vektor Satuan
= 1 i j k Sifat-sifat Perkalian silang (Cross Product) Vektor Satuan i x i j x j k x k = i x j j x k k x i k j i i j k
16
Nilai dari satuan vektor-vektor tersebut besarnya adalah satu satuan
VEKTOR SATUAN Vektor satuan adalah sebuah vektor yang didefinisikan sebagai satu satuan vektor. Jika digunakan sistem koordinat Cartesian (koordinat tegak) tiga dimensi, yaitu sumbu x dan sumbu y dan sumbu z. Vektor satuan pada sumbu x adalah i, vektor satuan pada sumbu y adalah j dan pada sumbu z adalah k. Nilai dari satuan vektor-vektor tersebut besarnya adalah satu satuan
17
VEKTOR SATUAN Vektor yang besarnya satu satuan Notasi Besar Vektor
Dalam koordinat Cartesian (koordinat tegak) Z A k Arah sumbu x : j Arah sumbu y : Y i Arah sumbu z : X
18
Contoh Soal 1. Lima buah vektor digambarkan sebagai berikut : Besar dan arah vektor pada gambar di samping : y x E A C D B Vektor Besar (m) Arah (o) A 19 B 15 45 C 16 135 D 11 207 E 22 270 Hitung : Besar dan arah vektor resultan. Jawab : Vektor Besar (m) Arah(0) Komponen X(m) Komponen Y (m) A B C D E 19 15 16 11 22 45 135 207 270 10.6 -11.3 -9.8 11.3 -5 -22 RX = 8.5 RY = -5.1 = R = 2 X R + 5 . 8 y ) 1 ( - 9,91 Besar vektor R : Arah vektor R terhadap sumbu x positif : tg = = - 0,6 5 . 8 1 - = (terhadap x berlawanan arah jarum jam )
19
2. Diketahui koordinat titik A adalah (2, -3, 4)
2. Diketahui koordinat titik A adalah (2, -3, 4). Tuliskan dalam bentuk vektor dan berapa besar vektornya ? Vektor Jawab : = + 2 (-3) 4 A 2i – 3j + 4k 29 satuan 3. Tentukanlah hasil perkalian titik dan perkalian silang dari dua buah vektor berikut ini : 2i – 2j + 4k A = i – 3j + 2k B Jawab : Perkalian titik : Perkalian silang : A . B = (-2)(-3) + 4.2 = 16 2 3 1 4 - k j i A x B = = { (-2).2 – 4.(-3)} i – {2.2 – 4.1} j + {2.(-3) – (-2).1} k = (-4+12) i + (4-4) j + (-6+2) k = 8i + 0j – 4j = 8i – 4k
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.