Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

BAB IV. DISTRIBUSI PROBABILITAS DISKRIT

Presentasi serupa


Presentasi berjudul: "BAB IV. DISTRIBUSI PROBABILITAS DISKRIT"— Transcript presentasi:

1 BAB IV. DISTRIBUSI PROBABILITAS DISKRIT

2 Diskrit Jumlah bayi lahir berbobot minimal 3 kg
Jumlah mahasiswa asli Yogyakarta Jumlah mahasiswa dari luar yogya Jumlah sapi di desa A Banyak tanaman teki di suatu petak

3 Kontinu Panjang daun Tinggi tanaman Bobot kambing Kadar air Absorbansi senyawa kimia

4 Jika kita memiliki ruang contoh yang terdiri dua elemen yaitu mahasiswa asli Yogyakarta (A) dan mahasiswa dari luar Yogya (L), dan digambarkan dengan himpunan { A dan L} . Kita lambangkan ruang peluang dengan {p,q}. p= P[A] yaitu peluang bahwa mahasiswa tersebut maasiswa asli Yogyakarta q = P[L] yaitu peluang bahwa mahasiswa tersebut maasiswa dari luar Yogyakarta

5 Kita dapat menghitung ruang peluang contoh yang terdiri dua mahasiswa sbb: [AA, AL, LL] p² 2pq q²

6 Bila kita harus mengambil contoh tiga mahasiswa secara saling tidak gayut, ruang peluang contoh yang terdiri tiga mahasiswa adalah sbb: [AAA, AAL, ALL, LLL] [ p³ 3p²q 3pq² q³]

7 Perhatikan bahwa : Banyak Contoh Ruang Sampel 1 p + q 2 p² + 2 pq + q²
3 p³ + 3p²q + 3pq² q³

8 Segitiga Pascal K

9 Segitiga Pascal memberi koefisien binomial yaitu banyak hasil yang mungkin dan berbagai kombinasi kejadian. Untuk k = 1 koefisiennya adalah: 1 , 1 Untuk k = 2 koefisiennya adalah: 1, 2, 1 Untuk k = 3 koefisiennya adalah: 1 , 3, 3, 1 dan seterusnya

10 Andaikan kita mempunyai suatu populasi serangga tepat diantaranya 30% terkena infeksi virus tertentu. Dan diambil contoh k = 5 serangga dan meneliti tiap serangga secara terpisah ada tidaknya virus, maka: p = 0,3 yaitu proporsi serangga yang terinfeksi q = 0,7 yaitu proporsi serangga tidak terinfeksi

11 Proporsi yang diharapkan akan berupa pemekaran binomial : (p + q)⁵ = (0,3 + 0,7)⁵ (0,3)⁵ + 5(0,3)⁴(0,7) + 10(0,3)³(0,7)² + (10)(0,3)² (0,7)³ + 5(0,3)(0,7)⁴ +(0,7)⁵

12 Artinya dari 5 serangga contoh, Harapan frekuensi serangga 5 terinfeksi : (0,3)⁵ = …… 4 terinfeksi : 5(0,3)⁴(0,7) = …… 3 terinfeksi: ……………. 2 terinfeksi …………… 1 terinfeksi …………… 0 terinfeksi : (0,7)⁵

13 A. Variabel random diskrit.
Variabel random diskrit X adalah : Cara memberi nilai angka pada setiap elemen ruang sampel X(a) : Ukuran karakteristik tertentu dari setiap elemen a pada suatu ruang sampel. Distribusi Probabilitas variabel random diskrit. Tabel, grafik atau formula/rumus yang menunjukkan nilai probabilitas p(X) yang berasosiasi dengan setiap nilai yang mungkin dari X. Contoh 1: Satu buah koin yang seimbang dilempar 2 kali, jika X adalah yang muncul angka, carilah distribusi probabilitas dari X

14 Kejadian Sederhana (Ei) Jumlah angka yang muncul
Jawab : Berdasarkan pada tabel tersebut : P(X=1) = P(E1) + P(E3) = ¼ + ¼ = ½ P(X=0) = P(E4) = ¼ P(X=2) = P(E2) = ¼ Kejadian Sederhana (Ei) Deskripsi Jumlah angka yang muncul P(Ei) E1 A G 1 E2 A A 2 E3 G A E4 G G

15 Distribusi Probabilitas Diskrit untuk X jumlah angka yang muncul
0≤ p(X) ≤ 1 ∑ p(X) = 1 Untuk semua X B. Harga harapan/Expected Value/Mean Jika x adalah variabel random diskrit dengan probabilitas p(x) maka mean atau expected value dari x adalah : µ = E(x) = ∑ x p(x) untuk semua x. Nilai X P(X) 1/4 1 1/2 2 ∑ P(X) = 1

16 C. Variansi dan standard deviasi Jika x adalah variabel random diskrit dengan probabilitas p(x) maka variansi dari x adalah : σ2 = E[(x-µ)2 ] Dan standar deviasi dari x adalah akar kuadrat dari variansinya : σ = √σ2 Contoh dari soal 1. µ = E(x) = ∑ x p(x) = 0. ¼ + 1. ½ + 2. ¼ = 1 = (0-1)2 (¼) + (1-1)2 (½)+ (2-1)2 (¼) = ½ σ = √σ2 = √ ½ = 0,707

17 D. Bernoulii trials Beberapa kejadian dalam probabilitas diskrit menganut kejadian bernoulli yaitu kejadian dengan karakteristik: Setiap trials menghasilkan satu dari dua hasil yang mungkin yang dinamakan sukses (S) dan gagal (T) Setiap trial, probabilitas sukses p(S) adalah sama dan ditulis p=p(S). Probabilitas tidak sukses atau gagal adalah p(T)=1-p(S) dan ditulis q maka p+q=1 Trial-trial itu independen satu dengan yang lainnya, probabilitas akan sukses suatu trial tidak berubah meskipun diperoleh informasi tentang trial lain

18 Contoh kejadian Bernoulii :
Pelemparan uang logam yang seimbang : p=q=1/2 Pengambilan sampel dengan pengembalian Pengambilan sampel tanpa pengembalian tetapi jumlah sampel sangat kecil ( < 5%) dibanding jumlah populasi. Pengambilan sampel hasil produksi sehingga dapat dikategorikan hasilnya sebagai baik atau rusak. Contoh 2 : Probabilitas seorang ibu akan melahirkan laki-laki adalah 0,5 maka berapakah probabilitas bahwa anak yang ketiga laki-laki ? P(LLL U LPL U PLL U PPL) = P(LLL) + P(LPL) + P(PLL)+P( PPL) = [P(LL) + P(LP) + P(PL)+P( PP)]P(L) = 1. P(L) = 1. 0,5 = 0,5.

19 Distribusi Probabilitas Diskrit Binomial
Karakteristik : Ekperimen terdiri dari n ualngan kejadian bernoulii yang identik. Setiap trial mempunyai dua kemungkinan hasil S untuk Sukses dan T untuk gagal P(S) = p dan P(T)=q tetap untuk setiap trial dengan p+q=1 Tiap trial independen Variabel random binomial x adalah jumlah sukses dalam n trial.

20 Distribusi Probabilitas untuk variabel random Binomial adalah : Dengan x = 0,1,2,3… n p = probabilitas sukses q = 1-p n = jumlah trial x = jumlah sukses dalam n trial

21 Untuk n besar  perhitungan rumit sudah ada dalam tabel : Untuk peristiwa lainnya ditranfer dalam bentuk : P(x=a)=P(x≤a) – P(x≤(a-1)) P(a≤x≤b) = P(x≤b) – P[(x≤(a-1)] P(x>c) = 1 – P(x≤c).

22 II. Distribusi Probabilitas Hipergeometrik Karakteristik :
Sampel random sebanyak n elemen diambil dengan tanpa pengembalian dari populasi N elemen dimana : a elemen dikatergorikan sukses N – a elemen dikategorikan sebagai gagal Ukuran sampel n sangat besar relatif terhadap N elemen dalam populasi yaitu jika n/N>0,05 Variabel random hipergeometrik x adalah jumlah sukses dalam n elemen Distribusi probabilitas hipergeometrik : X = 0,1,2,3…a untuk a<n X = 0,1,2,3…n untuk n<a

23 III. Distribusi Poisson
Karakteristik : Percobaan terdiri dari sejumlah bagian kejadian yang terjadi dalam satu satuan waktu atau luasan atau volume tertentu atau satuan lainnya seperti jarak, berat dan lain-lain. Probabilitas kejadian dalam unit waktu atau luasan atau volume tertentu adalah sama Jumlah kejadian dalam unit waktu atau luasan atau volume tertentu adalah independen. Rumus : X= 0,1,2,3….. λ= rata-rata jumlah kejadian dalam unit satuan tertentu e= 2,718

24 Mean dan variansi dari distribusi poisson
µ = λ dan σ2=λ=n p Tabel Probabilitas Poisson komulatif Distribusi probabilitas binomial jika n besar dan p sangat kecil (mendekati nol) maka dapat dikerjakan dengan pendekatan poisson.

25 Perbandingan karakteristik distribusi Probabilitas diskret
Binomial Hipergeometrik Poisson Percobaan Terdiri dari n trial Jumlah trial n tidak terlalu besar Sampel random sebanyak n diambil dari populasi N Banyak hasil percobaan yang terjadi selama satu satuan tertentu (Waktu, luasan atau volume). Tiap ulangan trial selalu menghasilkan 2 kemungkinan yaitu sukses atau gagal Pengambilan sampel tanpa pengembalian Jika n besar maka p sangat kecil atau mendekati nol. Probabilitas sukses tiap trial adalah sama Probabilitas p cukup besar Sebanyak a elemen dari N dikategorikan sebagai sukses dan (N-a) sebagai gagal Nilai tengah atau rata-rata sama dengan nilai variansinya. Tiap trial independen

26 Soal latihan 1. Sebuah kotak memuat 20 apel dan terdapat 4 buah yang telah rusak. Jika seorang komsumen membeli 5 buah apel dan mengambil secara random, hitunglah probabilitas : a. Apel yang terambil 2 buah rusak b. Lebih dari 2 apel yang telah rusak. 2. Hasil pengujian pelabelan saus menunjukkan bahwa 20% pelabelan gagal. Jika diambil 4 buah sampel botol secara random, berapakah probabilitas 3 dari 4 botol tersebut tidak berlabel.

27 3. Hasil pengujian pelabelan kemasan kaleng menunjukkan bahwa 0,05 pelabelan gagal. Jika diambil 40 buah sampel kaleng secara random, berapakah probabilitas : a. Satu buah kaleng tak berlabel b. Tiga atau kurang kaleng yang tidak berlabel.

28 Soal Latihan 4. Andaikata kita mempunyai suatu populasi serangga, tepat 40% diantaranya terinfeksi oleh virus X. Jika mengambil contoh dengan k= 5 serangga dan meneliti tiap serangga secara terpisah-pisah akan ada tidaknya virus, distribusi yang bagaimana dapat diharapkan apabila peluang setiap serangga pada contoh untuk terinfeksi tidak gayut dengan serangga yang lain ? Dianggap bahwa populasi sangat besar sehingga cara pengambilan contoh dengan pemulihan atau tanpa pemulihan tidak menimbulkan masalah.


Download ppt "BAB IV. DISTRIBUSI PROBABILITAS DISKRIT"

Presentasi serupa


Iklan oleh Google