Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

MATEMATIKA DASAR 1B Ismail Muchsin, ST, MT http://www.mercubuana.ac.id.

Presentasi serupa


Presentasi berjudul: "MATEMATIKA DASAR 1B Ismail Muchsin, ST, MT http://www.mercubuana.ac.id."— Transcript presentasi:

1 MATEMATIKA DASAR 1B Ismail Muchsin, ST, MT

2 6. Jenis – Jenis Fungsi Riil 6.1 Fungsi Polinom
Merupakan fungsi suku banyak, contohnya : f (x) = 3x3 – 4x2 + 2x - 1 Polinom berderajat 3 g (x) = 2x5 - x + 2 Polinom berderajat 5 6.2 Fungsi Aljabar Adalah fungsi yang memenuhi persamaan : x0 yn + x yn-1 + … + xn-1 y + xn = 0 Contoh : Tunjukkan bahwa f (x) = x + x – x2 adalah fungsi aljabar y = x + x – x2 Jawab : y - x = x – x2 ( y – x )2 = x – x2 y2 - 2xy + x2 = x – x2 y2 - 2xy - x + 2x2 Sesuai dengan Rumus Fungsi Aljabar Ismail Muchsin, ST, MT

3 Merupakan fungsi yang bukan Aljabar.
6.3 Fungsi Transenden Merupakan fungsi yang bukan Aljabar. Beberapa fungsi transenden yang khusus : a. Fungsi Eksponensial f (x) = a , a 0 , 1 f (x) = 23 , 32 b. Fungsi Trigonometri Sin x , Cos x , Tg x , Ctg x , Sec x , Cosec x c. Fungsi Siklometri Merupakan fungsi Invers Trigonometri y = arc sin x artinya x = sin y y = arc sin ½ = sin-1 ½ = 30 d. Fungsi Logaritma Log x , a 0,1 , Ex : f (x) = a y = Ln x Log x = Ln x e Ismail Muchsin, ST, MT e y =y

4 Tgh x ex - e-x e. Fungsi Hiperbolik Sinh x = ex - e-x Cosech x = 1 = 2
= . 2 Sinh x ex - e-x Cosh x = ex + e-x Sech x = 1 = 2 . 2 Cosh x ex + e-x Tgh x = Sinh x = ex + e-x Ctgh x = 1 = ex + e-x Cosh x ex - e-x Tgh x ex - e-x Ismail Muchsin, ST, MT

5 7. Fungsi Dalam Bentuk Parameter
y = f (x) , dinyatakan dalam bentuk parameter t sebagai : x = f1 (t) y = f2 (t) , yang mana pelenyapan t menghasilkan y = f (x) Contoh Soal : 1. x = 2t y = 4t – 2 2. x = ½ t y = ¼ t2 – 4 t = ½x y = 4 ( ½ x ) - 2 = 2x - 2 t = 2x x = 6 ( ½ y ) - 12 ( ½ y )2 = 3y - 3y2 3. x = a cos t y = b sin t cos t = x sin t = y cos2 t = x2 . a2 sin2 t = y2 . a b b2 cos2 t + sin2 t = x2 + y2 . a2 1 = x2 + y2 . Ismail Muchsin,2 ST, MT + b2 a b2

6 8. Koordinat Polar y x = r cos y = r sin r2 = x2 + y2  x
Contoh Soal : 1. Cari nilai x dan y jika r = 5 dan = Jawab : x = r cos = 5 cos = 5 ( - 1 ) = - 5 y = r sin = 5 sin = 5 ( 0 ) = 0 2. Ubah a2 = x2 + y2 ke bentuk polar Jawab : a2 = r2 r = a Ismail Muchsin, ST, MT

7 a 3. Gambar r = a cos 2 untuk 00 Jawab :  r = a cos 2 900
600 1200 1350 450 30 a ½a 1500 45 60 -½a 300 ½a ½a 90 -a 1800 00 a a 120 -½a ½a -½a 135 150 180 ½a a -a Ismail Muchsin, ST, MT

8 Ismail Muchsin, ST, MT http://www.mercubuana.ac.id


Download ppt "MATEMATIKA DASAR 1B Ismail Muchsin, ST, MT http://www.mercubuana.ac.id."

Presentasi serupa


Iklan oleh Google