Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

KONSEP DASAR PROBABILITAS

Presentasi serupa


Presentasi berjudul: "KONSEP DASAR PROBABILITAS"— Transcript presentasi:

1 KONSEP DASAR PROBABILITAS
Nailil Hasanah Elfatchiyah : Arina Hidayati :

2 Pendahuluan Banyak kejadian dalam kehidupan sehari-hari yang sulit diketahui dengan pasti, terutama kejadian yang akan datang. Meskipun kejadian-kejadian tersebut tidak pasti, tetapi kita bisa melihat fakta-fakta yang ada untuk menuju derajat kepastian atau derajat keyakinan bahwa sesuatu akan terjadi. Derajat / tingkat kepastian atau keyakinan dari munculnya hasil percobaan statistik disebut Probabilitas (Peluang), yang dinyatakan dengan P.

3 Konsep dan definisi dasar
Eksperimen/percobaan probabilitas adalah segala kegiatan dimana suatu hasil (outcome) diperoleh. Ruang sampel adalah himpunan seluruh kemungkinan outcome dari suatu eksperimen/percobaan. Biasanya dinyatakan dengan S. Banyaknya outcome dinyatakan dengan n(S). Peristiwa/kejadian adalah himpunan bagian dari outcome dalam suatu ruang sampel.

4 Contoh Dilakukan eksperimen, yaitu diperiksa 3 buah sikring satu persatu secara berurutan dan mencatat kondisi sikring tersebut dengan memberi notasi B untuk sikring yang baik dan R untuk sikring yang rusak. Maka ruang sampel pada eksperimen probabilitas pemeriksaan tersebut adalah S = {BBB, BBR, BRB, RBB, BRR, RBR, RRB, RRR}. Jumlah outcome dalam ruang sampel S adalah n(S) = 23 = 8. Jika A menyatakan peristiwa diperoleh satu sikring yang rusak, maka A = {BBR, BRB, RBB}. Jumlah outcome dalam ruang peristiwa adalah n(A) = 3.

5 Pengertian Probabilitas adalah harga perbandingan jumlah kejadian (A) yang mungkin dapat terjadi terhadap (N) jumlah keseluruhan kejadian yang mungkin terjadi dalam sebuah peristiwa. P(A) = Peluang n(A) = Peluang kejadian A n(N) = Peluang seluruh kejadian

6 Contoh 1 Berapakah peluang munculnya angka ganjil pada pelemparan sebuah dadu? Jawab : Peluang munculnya angka ganjil pada tiap lemparan adalah 1,3, dan 5, maka : P(ganjil)= n(A)/n(N) = 3/6 = 1/2

7 Contoh 2 Sebuah koin dilemparkan dua kali. Berapakah probabilitas bahwa paling sedikit muncul satu Muka? Jawab : Misal M = Muka , B = Belakang Ruang sampel untuk percobaan ini adalah S = {MM, MB, BM, BB} Kejadian A = muncul paling sedikit satu Muka adalah A = {MM, MB, BM} Jadi, Probabilitas bahwa paling sedikit muncul satu Muka adalah P= n(A)/n(N) = 3/4

8 Probabilitas kejadian majemuk
Bila A dan B kejadian sembarang pada ruang sampel S, maka probabilitas gabungan kejadian A dan B adalah kumpulan semua titik sampel yang ada pada A atau B atau pada keduanya.

9 Contoh Kemungkinan bahwa Ari lulus ujian matematika adalah 2/3 dan kemungkinan ia lulus bahasa inggris adalah 4/9. Bila probabilitas lulus keduanya adalah 1/4, berapakah probabilitas Ari dapat paling tidak lulus salah satu dari kedua pelajaran tersebut? Jawab : Bila M adalah kejadian lulus matematika, dan B adalah kejadian lulus bahasa inggris, maka : Probabilitas Ari lulus salah satu pelajaran tersebut adalah : P(M  B) = P(M) + P(B) – P(M  B) = 2/ /9 – 1/4 = 31/36

10 Dua kejadian saling lepas (disjoint events atau mutually exclusive):
Bila A dan B dua kejadian saling lepas, maka berlaku : Bila A, B, dan C tiga kejadian saling lepas, maka berlaku :

11 Contoh Berapakah probabilitas mendapatkan total 7 atau 11 bila sepasang dadu dilemparkan? Jawab : Bila A adalah kejadian diperoleh total 7, maka A = {(1,6), (6,1), (2,5), (5,2), (3,4), (4,3)} Bila B adalah kejadian diperoleh total 11, maka B = {(5,6), (6,5)} Sehingga probabilitas mendapatkan total 7 atau 11 adalah : P(A  B) = P(A) + P(B) = 6/36 + 2/36 = 8/36

12 Dua kejadian saling komplementer:
Bila A dan A’ dua kejadian dalam S yang saling komplementer, maka berlaku :

13 Contoh Pada pelemparan dua dadu, jika A adalah kejadian munculnya muka dadu sama, hitunglah probabilitas munculnya muka dua dadu yang tidak sama. Jawab : Misal A= kejadian munculnya muka dua dadu yang sama = {(1,1), (2,2) , (3,3), (4,4), (5,5), (6,6)} maka P(A) = 6/36 Sehingga, Probabilitas munculnya muka dua dadu yang tidak sama = P(A’) adalah: P(A’) = 1 – P(A) = 1 – 6/36 = 30/36

14 Dua kejadian saling bebas (independent):
Dikatakan saling bebas artinya kejadian itu tidak saling mempengaruhi. Dua kejadian A dan B dalam ruang sampel S dikatakan saling bebas, jika kejadian A tidak mempengaruhi probabilitas terjadinya kejadian B dan sebaliknya kejadian B tidak mempengaruhi probabilitas terjadinya kejadian A. Bila A dan B dua kejadian saling bebas, berlaku :

15 Contoh Pada pelemparan dua uang logam secara sekaligus, apakah kejadian munculnya muka dari uang logam pertama dan uang logam kedua saling bebas? Jawab : Ruang sampel S = {(m,m), (m,b), (b,m), (b,b)} Misalkan, A = kejadian muncul muka dari uang logam 1  P(A) = 2/4 = ½ = {(m,m), (m,b)} B = kejadian muncul muka dari uang logam 2  P(B) = 2/4 = ½ = {(m,m), (b,m)} A  B = kejadian muncul dua muka dari uang logam 1 dan 2 = {(m,m)}  P(A  B) = ¼ Bila A dan B saling bebas berlaku : P(A  B) = P(A). P(B) ¼ = ½ ½ ¼ = ¼ Jadi, A dan B saling bebas.

16 Probabilitas bersyarat
Adalah probabilitas suatu kejadian B terjadi dengan syarat kejadian A lebih dulu terjadi atau akan terjadi atau diketahui terjadi. Ditunjukkan dengan P(BA) yang dibaca “probabilitas dimana B terjadi karena A terjadi”

17 Contoh Misalkan dipunyai kotak berisi 20 sekering, 5 diantaranya rusak. Bila 2 sekering diambil dari kotak satu demi satu secara acak tanpa mengembalikan yang pertama ke dalam kotak. Berapakah peluang kedua sekering itu rusak? Jawab : Misalkan A = kejadian sekering pertama rusak B = kejadian sekering kedua rusak Maka peluang kedua sekering itu rusak = P(A  B) P(A  B) = P(A). P(BA) = 5/20 . 4/19 = 1/19

18 Aturan Bayes : Misalkan A1, A2, dan A3 adalah tiga kejadian saling lepas dalam ruang sampel S. B adalah kejadian sembarang lainnya dalam S. S A1 A2 A3 B

19 probabilitas kejadian B adalah :
P(B) = P(BA1). P(A1) + P(BA2). P(A2) + P(BA3). P(A3) = disebut Hukum Probabilitas Total

20 Secara umum, bila A1, A2, A3, …, An kejadian saling lepas dalam ruang sampel S dan B kejadian lain yang sembarang dalam S, maka probabilitas kejadian bersyarat AiB dirumuskan sebagai berikut :

21 Contoh : Misalkan ada tiga kotak masing-masing berisi 2 bola. Kotak 1 berisi 2 bola merah, kotak 2 berisi 1 bola merah dan 1 bola putih, dan kotak 3 berisi 2 bola putih. Dengan mata tertutup Anda diminta mengambil satu kotak secara acak dan kemudian mengambil 1 bola secara acak dari kotak yang terambil itu.. Berapakah peluang bola yang terambil berwarna merah? Berapakah peluang bola tersebut terambil dari kotak 2?

22 Jawab P(bola yang terambil berwarna merah) =
P(bola merah tersebut terambil dari kotak 2) =

23 Permutasi Permutasi adalah pengelompokkan unsur dengan memperhatikan urutan dan dinotasikan dengan nPr , yang artinya ‘Permutasi r unsur dari n unsur yang tersedia. Contoh : Dua kupon lotere diambil dari 20 kupon untuk menentukan hadiah pertama dan kedua. Hitung banyaknya titik contoh dalam ruang contohnya.

24 Permutasi Banyaknya permutasi n benda yang berbeda yang disusun dalam suatu lingkaran adalah (n-1)! contoh : Banyaknya permutasi empat huruf a, b, c, d jika keempatnya disusun dalam sebuah lingkaran adalah 4-1! = 3 x 2 x 1 = 6

25 Kombinasi Kombinasi adalah penggabungan beberapa objek dari suatu kelompok tanpa memperhatikan urutan. Dengan kata lain, kombinasi adalah pengelompokkan beberapa objek tanpa melihat urutan seperti halnya permutasi. Contoh : Bayaknya cara memilih 2 orang dari 4 orang partai Republik :

26 TERIMAKASIH


Download ppt "KONSEP DASAR PROBABILITAS"

Presentasi serupa


Iklan oleh Google