Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
1
KONSEP DASAR PROBABILITAS
2
Pengantar : Banyak kejadian dalam kehidupan sehari-hari yang sulit diketahui dengan pasti, terutama kejadian yang akan datang. Meskipun kejadian-kejadian tersebut tidak pasti, tetapi kita bisa melihat fakta-fakta yang ada untuk menuju derajat kepastian atau derajat keyakinan bahwa sesuatu akan terjadi. Derajat / tingkat kepastian atau keyakinan dari munculnya hasil percobaan statistik disebut Probabilitas (Peluang), yang dinyatakan dengan P.
3
Konsep dan definisi dasar
Eksperimen/percobaan probabilitas adalah segala kegiatan dimana suatu hasil (outcome) diperoleh. Ruang sampel adalah himpunan seluruh kemungkinan outcome dari suatu eksperimen/percobaan. Biasanya dinyatakan dengan S. Banyaknya outcome dinyatakan dengan n(S). Peristiwa/kejadian adalah himpunan bagian dari outcome dalam suatu ruang sampel.
4
Contoh : Dilakukan eksperimen, yaitu diperiksa 3 buah sikring satu persatu secara berurutan dan mencatat kondisi sikring tersebut dengan memberi notasi B untuk sikring yang baik dan R untuk sikring yang rusak. Maka ruang sampel pada eksperimen probabilitas pemeriksaan tersebut adalah S = {BBB, BBR, BRB, RBB, BRR, RBR, RRB, RRR}. Jumlah outcome dalam ruang sampel S adalah n(S) = 23 = 8. Jika A menyatakan peristiwa diperoleh satu sikring yang rusak, maka A = {BBR, BRB, RBB}. Jumlah outcome dalam ruang peristiwa adalah n(A) = 3.
5
Definisi probabilitas
Bila kejadian A terjadi dalam m cara dari seluruh n cara yang mungkin terjadi dan masing-masing n cara itu mempunyai kesempatan yang sama untuk muncul, maka probabilitas kejadian A, ditulis P(A), dapat dituliskan :
6
Sifat-sifat probabilitas kejadian A :
0 P(A) 1 , artinya nilai probabilitas kejadian A selalu terletak antara 0 dan 1 P(A) = 0, artinya dalam hal kejadian A tidak terjadi (himpunan kosong), maka probabilitas kejadian A adalah 0. Dapat dikatakan bahwa kejadian A mustahil untuk terjadi. P(A) = 1, artinya dalam hal kejadian A, maka probabilitas kejadian A adalah 1. Dapat dikatakan bahwa kejadian A pasti terjadi.
7
Contoh (1): Sebuah koin dilemparkan dua kali. Berapakah probabilitas bahwa paling sedikit muncul satu Muka? Jawab : Misal M = Muka , B = Belakang Ruang sampel untuk percobaan ini adalah S = {MM, MB, BM, BB} Kejadian A = muncul paling sedikit satu Muka adalah A = {MM, MB, BM} Jadi, Probabilitas bahwa paling sedikit muncul satu Muka adalah
8
Contoh (2): Suatu campuran kembang gula berisi 6 mint, 4 coffee, dan 3 coklat. Bila seseorang membuat suatu pemilihan acak dari salah satu kembang gula ini, carilah probabilitas untuk mendapatkan : (a) mint, dan (b) coffee atau coklat. Jawab : Misal, M = mint , C = coffee , T = coklat (a). Probabilitas mendapatkan mint = (b). Probabilitas mendapatkan coffee atau coklat =
9
PERMUTASI Permutasi sejumlah obyek adalah penyusunan obyek tersebut dalam suatu urutan tertentu. Dalil 1 Permutasi : Banyaknya Permutasi n benda yang berbeda adalah n! Contoh : Dari huruf A, B, C → permutasi yang mungkin adalah: ABC, ACB, BAC, BCA, CAB dan CBA. P
10
Dalil 2 Permutasi : Banyaknya permutasi r benda dari n benda yang berbeda adalah :
Contoh :
11
Dalil 3 Permutasi (Permutasi Melingkar): Banyaknya permutasi n benda yang disusun dalam suatu lingkaran adalah (n-1)! Contoh : Enam orang bermain bridge dalam susunan melingkar. Berapa susunan yang mungkin dibentuk? n = 6 maka permutasi melingkar = (6-1)! = 5! = 5 × 4 × 3 × 2 ×1 = 120
12
Dalil 4 Permutasi (Permutasi Bersekat) Banyaknya permutasi untuk sejumlah n benda :
Contoh : Berapa permutasi dari kata STATISTIKA? S = 2; T = 3; A = 2; I = 2; K = 1
13
KOMBINASI (C) Kombinasi r obyek yang dipilih dari n obyek adalah susunan r obyek tanpa memperhatikan urutan. Misalkan : Kombinasi 2 dari 3 obyek A, B dan C adalah 1. A dan B = B dan A 2. A dan C = C dan A 3. B dan C = C dan B
14
Kaidah perkalian kombinasi
15
Probabilitas kejadian majemuk (1):
Bila A dan B kejadian sembarang pada ruang sampel S, maka probabilitas gabungan kejadian A dan B adalah kumpulan semua titik sampel yang ada pada A atau B atau pada keduanya.
16
Probabilitas kejadian majemuk (2):
Bila A, B, dan C kejadian sembarang pada ruang sampel S, maka probabilitas gabungan kejadian A, B, dan C adalah :
17
Contoh : Kemungkinan bahwa Ari lulus ujian matematika adalah 2/3 dan kemungkinan ia lulus bahasa inggris adalah 4/9. Bila probabilitas lulus keduanya adalah 1/4, berapakah probabilitas Ari dapat paling tidak lulus salah satu dari kedua pelajaran tersebut? Jawab : Bila M adalah kejadian lulus matematika, dan B adalah kejadian lulus bahasa inggris, maka : Probabilitas Ari lulus salah satu pelajaran tersebut adalah : P(M B) = P(M) + P(B) – P(M B) = 2/ /9 – 1/4 = 31/36
18
Dua kejadian saling lepas (disjoint events atau mutually exclusive):
Bila A dan B dua kejadian saling lepas, maka berlaku : Bila A, B, dan C tiga kejadian saling lepas, maka berlaku :
19
Contoh : Berapakah probabilitas mendapatkan total 7 atau 11 bila sepasang dadu dilemparkan? Jawab : Bila A adalah kejadian diperoleh total 7, maka A = {(1,6), (6,1), (2,5), (5,2), (3,4), (4,3)} Bila B adalah kejadian diperoleh total 11, maka B = {(5,6), (6,5)} Sehingga probabilitas mendapatkan total 7 atau 11 adalah : P(A B) = P(A) + P(B) – P(A B) = 6/36 + 2/36 – 0 = 8/36
20
Dua kejadian saling komplementer:
Bila A dan A’ dua kejadian dalam S yang saling komplementer, maka berlaku :
21
Contoh: Pada pelemparan dua dadu, jika A adalah kejadian munculnya muka dadu sama, hitunglah probabilitas munculnya muka dua dadu yang tidak sama. Jawab : Misal A = kejadian munculnya muka dua dadu yang sama = {(1,1), (2,2) , (3,3), (4,4), (5,5), (6,6)} maka P(A) = 6/36 Sehingga, Probabilitas munculnya muka dua dadu yang tidak sama = P(A’) adalah: P(A’) = 1 – P(A) = 1 – 6/36 = 30/36
22
Dua kejadian saling bebas (independent):
Dikatakan saling bebas artinya kejadian itu tidak saling mempengaruhi. Dua kejadian A dan B dalam ruang sampel S dikatakan saling bebas, jika kejadian A tidak mempengaruhi probabilitas terjadinya kejadian B dan sebaliknya kejadian B tidak mempengaruhi probabilitas terjadinya kejadian A. Bila A dan B dua kejadian saling bebas, berlaku :
23
Contoh: Pada pelemparan dua uang logam secara sekaligus, apakah kejadian munculnya muka dari uang logam pertama dan uang logam kedua saling bebas? Jawab : Ruang sampel S = {(m,m), (m,b), (b,m), (b,b)} Misalkan, A = kejadian muncul muka dari uang logam 1 P(A) = 2/4 = ½ = {(m,m), (m,b)} B = kejadian muncul muka dari uang logam 2 P(B) = 2/4 = ½ = {(m,m), (b,m)} A B = kejadian muncul dua muka dari uang logam 1 dan 2 = {(m,m)} P(A B) = ¼ Bila A dan B saling bebas berlaku : P(A B) = P(A). P(B) ¼ = ½ ½ ¼ = ¼ Jadi, A dan B saling bebas.
24
Probabilitas bersyarat (conditional probability):
Adalah probabilitas suatu kejadian B terjadi dengan syarat kejadian A lebih dulu terjadi atau akan terjadi atau diketahui terjadi. Ditunjukkan dengan P(BA) yang dibaca “probabilitas dimana B terjadi karena A terjadi”
25
Contoh : Misalkan dipunyai kotak berisi 20 sekering, 5 diantaranya rusak. Bila 2 sekering diambil dari kotak satu demi satu secara acak tanpa mengembalikan yang pertama ke dalam kotak. Berapakah peluang kedua sekering itu rusak? Jawab : Misalkan A = kejadian sekering pertama rusak B = kejadian sekering kedua rusak Maka peluang kedua sekering itu rusak = P(A B) P(A B) = P(A). P(BA) = 5/20 . 4/19 = 1/19
26
Aturan Bayes : Misalkan A1, A2, dan A3 adalah tiga kejadian saling lepas dalam ruang sampel S. B adalah kejadian sembarang lainnya dalam S. S A1 A2 A3 B
27
probabilitas kejadian B adalah :
P(B) = P(BA1). P(A1) + P(BA2). P(A2) + P(BA3). P(A3) = disebut Hukum Probabilitas Total
28
Secara umum, bila A1, A2, A3, …, An kejadian saling lepas dalam ruang sampel S dan B kejadian lain yang sembarang dalam S, maka probabilitas kejadian bersyarat AiB dirumuskan sebagai berikut : disebut Rumus Bayes (Aturan Bayes).
29
Contoh: Misalkan ada tiga kotak masing-masing berisi 2 bola. Kotak 1 berisi 2 bola merah, kotak 2 berisi 1 bola merah dan 1 bola putih, dan kotak 3 berisi 2 bola putih. Dengan mata tertutup Anda diminta mengambil satu kotak secara acak dan kemudian mengambil 1 bola secara acak dari kotak yang terambil itu.. Berapakah peluang bola yang terambil berwarna merah? Berapakah peluang bola tersebut terambil dari kotak 2?
30
Jawab P(bola yang terambil berwarna merah) =
P(bola merah tersebut terambil dari kotak 2) =
31
LATIHAN SOAL
32
Soal 1: Sebuah kotak berisi 8 bola merah, 7 bola putih, dan 5 bola biru. Jika diambil 1 bola secara acak, tentukanlah probabilitas terpilihnya bola : Merah Tidak biru Merah atau putih
33
Soal 2: Dari 10 orang staf bagian pemasaran PT. Rumah Elok, diketahui : Sarjana teknik pria 1 orang, Sarjana teknik wanita 3 orang, , dan Sarjana ekonomi pria 2 orang, dan Sarjana ekonomi wanita 4 orang Dari 10 staf tersebut dipilih secara acak 1 orang untuk menjadi manajer pemasaran. Berapa peluang A, jika A menyatakan kejadian bahwa manajer adalah seorang wanita? Berapa peluang B, jika B menyatakan kejadian bahwa manajer adalah seorang sarjana teknik? Hitunglah P(AB). Hitunglah P(AB).
34
Soal 3: Ada 3 kotak yaitu 1, 2, dan 3 yang masing-masing berisi bola merah dan putih, seperti yang dituliskan dalam tabel di bawah ini Mula-mula satu kotak dipilih secara acak, kemudian dari kotak yang terpilih diambil 1 bola juga secara acak. Tiap kotak mempunyai kesempatan yang sama untuk terpilih. Berapa peluang bahwa bola itu merah ? Berapa peluang bahwa bola itu putih ? Bila bola terpilih merah, berapa peluang bahwa bola tersebut dari kotak 1? Bila bola terpilih putih, berapa peluang bahwa bola tersebut dari kotak 2? Kotak 1 Kotak 2 Kotak 3 Jumlah Bola merah 5 7 8 20 Bola putih 4 3 9 16 10 17 36
35
Soal 4 Sebuah sistem mekanik memerlukan dua fungsi sub-sistem yang saling berkaitan. Skema penyederhaan sistem tersebut terlihat dalam gambar di bawah. Terlihat bahwa A harus berfungsi dan sekurangnya salah satu dari B harus berfungsi agar sistem mekanik itu bekerja baik. Diasumsikan bahwa komponen-komponen B bekerja dengan tidak bergantung satu sama lain dan juga pada komponen A. Probabilitas komponen berfungsi baik adalah untuk A = 0.9 dan masing-masing B = 0.8. Hitunglah probabilitas sistem mekanik tersebut berfungsi dengan baik. A B1 B2 Input Output
36
Soal 5 Mesin produksi dari PT Sukses Jaya ada 2. Kapasitas produksi mesin pertama adalah 30% dan mesin kedua adalah 70%. 40% dari produksi mesin pertama menggunakan komponen lokal dan sisanya menggunakan komponen impor. Sedangkan 50% dari mesin kedua menggunakan komponen lokal dan sisanya menggunakan komponen impor. Apabila dipilih secara random sebuah produksi, berapa probabilitas: Produk yang terambil menggunakan komponen lokal Bila diketahui produk yang terambil menggunakan komponen lokal, berapa probabilitas produk tersebut dari mesin pertama.
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.