Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
1
Menguak Rahasia Angkasa TATA SURYA
Dipersembahkan Oleh: Muchamad Chairudin, S. Pd
2
Teori Proses Pembentukan Tata Surya
TATA SURYA adalah kumpulan benda-benda langit yang bergerak di sekitar matahari. Teori Proses Pembentukan Tata Surya 1. Hipotesis Sederhana Matahari dianggap mempunyai gravitasi yang sangat besar. Gravitasi ini akan menangkap benda-benda diluar angkasa secara acak dalam kurun waktu jutaan tahun. 2. Hipotesis Nebula Nebula adalah sekumpulan (kebanyakan gas helium dan hidrogen), debu (karbon, silikon, besi, dll), dan plasma (lautan muatan listrik positip dan muatan listrik negatip) yang berbentuk awan-awan diruang angkasa. Dalam teori ini: gravitasi ini akan membuat gas-gas ini termampatkan sehingga ukuran awan gas itu mengecil
3
Lanjutan …… Hipotesa Tumbukan Thomas Chambertain dan France Moulton: saat matahari masih muda ada sebuah bintang melintas cukup dekat, sebagian materi tertarik oleh bintang itu sehingga materi itu membentuk planet. Teori Modern Awan padat dan dingin yang berjumlah banyak mengumpul karena pengaruh gravitasi. Awan berputar dan memipih membentuk semacam cakram. Pusat piringan membentuk bola gas panas, menjadi protosun atau calon matahari
4
Lanjutan ….. Pusat bola api makin lama makin menggumpal sampai ada keseimbangan antara gaya tolak akibat tekanan gas dan gaya tarik gravitasi. Partikel-partikel gas bertumbukan membentuk planetesimal (bahan baku planet) dan akhirnya akan bertumbukan satu sama lain dan bergabung membentuk protoplanet. Daerah yang dekat matahari materialnya tersebut dari logam dan batuan (lebih tahan panas) sehingga akan membentuk planet teresterial. Dan daerah yang jaraknya jauh dengan matahari terbuat dari gas dan es sehingga membentuk planet jovian.
5
Sejarah pemahaman manusia tentang alam semesta dari Geosentris ke Heliosentris
Tata surya dihuni oleh Sebuah bintang yg disebut matahari & 8 plenet 34 satelit salah satunya bulan, 5000 asteroid, jutaan meteorit, milyar komet. Bintik debu, molekul gas, atom lepas yg tidak terhitung jmlnya. 99 % dari seluruh zat tata surya terkandung dlm matahari, sisanya yg sangat kecil merupakan gabungan bumi dan bulan.
6
Clausius Ptolomeus, seorang filsafat Yunani kuno ber-pendapat bahwa “Bumi adalah pusat dari alam semesta”. Matahari, Bulan dan planet-planet beredar mengelilingi Bumi yang tetap diam sebagai pusatnya, disebut pandangan GEOSENTRIS (14 abad dianut orang) Letak benda langit menurut Geosentris Bumi Bulan Merkurius Planet Dalam Venus Matahari Mars Yupiter Saturnus Planet Luar
7
Letak benda langit menurut Heliosentris
Nikolas Kopernikus adalah seorang ahli astronomi bangsa Polandia, mencetuskan revolusi dunia ilmu, agama, serta kebudayaan, menyatakan bahwa Matahari merupakan pusat Tatasurya yang diedari oleh bumi serta planet lainnya (abad 16). Sistem tata surya ini disebut HELIOSENTRIS, susunan planetnya sebagai berikut: Bumi Venus Matahari Mars Yupiter Saturnus Merkurius Asteroida Uranus Pluto Neptunus Letak benda langit menurut Heliosentris
8
TATA SURYA Susunan Matahari dan anggota tata surya yang mengitarinya.
Planet 3. Asteroid Komet 4. Satelit 5. Meteoroid
9
1. The Sun (Matahari) Much of what is known about the stars comes from studying the star closest to us, the Sun. At a distance of almost 150 million kilometers, the Sun is a few hundred thousand times closer to us than the next nearest star. Because of its proximity, astronomers are able to study our star in much, much greater detail than they can the other stars. The Sun is a G2-type main sequence star that has been shining for almost 5 billion years. It is known from radioactive dating of the Earth, Moon, and meteorites, that these objects have been around for about that length of time and temperatures on the surface of the Earth have been pleasant since it formed. The Sun's energy has made this possible. What could power something as big as the Sun for so long? The process called nuclear fusion is now known to be the source of the Sun's enormous energy, as well as, other stars. This is a relatively recent discovery. However, using simple physical principles of gas physics, astronomers knew about the density and temperature structure of the interior of the stars long before they unlocked the secret to what could power them for so long. This chapter will cover these topics. I will first give a brief description of the Sun to give you an idea of what a star is like and then go into the basic principles of what the interiors of stars are like and what powers them. Sol
10
Solar Data Mass (kg) 1.989x1030 Mass (Earth = 1) 332,830
Equatorial radius (km) 695,000 Equatorial radius (Earth = 1) Mean density (gm/cm3) 1.410 Surface gravity (m/s2) 273 Rotational period (days) 25-36 Escape velocity (km/sec) Luminosity (ergs/sec) x1033 Apparent Visual Magnitude -26.8 Absolute Visual Magnitude +4.8 Spectral Class G2 V Mean surface temperature 5,800°C Age (billion years) 4.5 Principal chemistry (by mass) Hydrogen 73.4% Helium 25.0% Oxygen % Carbon 0.3% Iron 0.2% Nitrogen 0.1% Silicon % Neon % Magnesium % Sulfur % All others % Size The Sun is by far the biggest thing in the solar system. From its angular size of about 0.5° and its distance of almost 150 million kilometers, its diameter is determined to be 1,392,000 kilometers. This is equal to 109 Earth diameters and almost 10 times the size of the largest planet, Jupiter. All of the planets orbit the Sun because of its enormous gravity. It has about 333,000 times the Earth's mass and is over 1,000 times as massive as Jupiter. It has so much mass that it is able to produce its own light. This feature is what distinguishes stars from planets. Composition What is the Sun made of? Spectroscopy shows that hydrogen makes up about 94% of the solar material, helium makes up about 6% of the Sun, and all the other elements make up just 0.13% (with oxygen, carbon, and nitrogen the three most abundant “metals”---they make up 0.11%). In astronomy, any atom heavier than helium is called a ``metal'' atom. The Sun also has traces of neon, sodium, magnesium, aluminum, silicon, phosphorus, sulfur, potassium, and iron. The percentages quoted here are by the relative number of atoms. If you use the percentage by mass, you find that hydrogen makes up 78.5% of the Sun's mass, helium 19.7%, oxygen 0.86%, carbon 0.4%, iron 0.14%, and the other elements are 0.54%.
11
MODUL 2 - TATASURYA 11
12
The composition of the sun
MODUL 2 - TATASURYA 12 12
13
Sun’s Surface Three major parts: Photosphere, Chromosphere and Corona
What we observe when we look at the Sun. 96 % of the light we are receiving from the Sun comes from the top 400 kms of the Sun. We can learn the temperature, pressure and density from the spectrum. T is about 5000 K. Pressure is about 1/100 of sea level. Density is about 1/10000 of sea level. The deepest layer of the Sun you can see is the photosphere. The word “photosphere” means “light sphere”. It is called the “surface” of the Sun because at the top of it, the photons are finally able to escape to space. The photosphere is about 500 kilometers thick. Remember that the Sun is totally gaseous, so the surface is not something you could land or float on. It is a dense enough gas that you cannot see through it. It emits a continuous spectrum. Several methods of measuring the temperature all determine that the Sun's photosphere has a temperature of about 5840 K. Measuring the Sun's Temperature One method, called Wien's law, uses the wavelength of the peak emission in the Sun's continuous spectrum. Another method uses the flux of energy reaching the Earth and the inverse square law. The flux is the amount of energy passing through a unit area (e.g., 1 meter2) every second. From the Inverse Square Law of Light Brightness, you find that the solar flux at the Earth's distance = the Sun's surface flux × (Sun's radius/Earth's distance)2 = 1380 Watts/meter2. Since the Sun's photosphere is approximately a thermal radiator, the flux of energy at its surface = × (the Sun's surface temperature)4, where is the Stefan-Boltzmann constant. Rearranging the equation, the photosphere's temperature = [(solar flux at Earth)/ ) × (Earth distance/Sun's radius)2]1/4. These two methods give a rough temperature for the Sun of about 5800 K. The upper layers of the photosphere are cooler and less dense than the deeper layers, so you see absorption lines in the solar spectrum. Which element absorption lines are present and their strength depends sensitively on the temperature. You can use the absorption line strengths as an accurate temperature probe to measure a temperature of about 5840 K.
14
Chromosphere First discovered during Solar Eclipses.
Thin colorful layer, hence the name chromo (color) sphere. The chromosphere is km thick. It glows faintly relative to the photosphere and can only be seen easily in a total solar eclipse. When it can be seen it is reddish in color (because of strong Balmer H-alpha emission). This color is the origin of its name (chromos meaning “color”). The faint flow of the chromosphere is due to an emission spectrum from hot, low density gases emitting at discrete wavelengths. The discovery of helium noted earlier was from emission lines seen in the chromosphere during an eclipse in This new element was only found on the Earth in 1895. Today -> we use a device called Coronagraph The light comes from H- ions and Helium. Thickness of the chromosphere is 2,000-3,000 kms.
15
Kromosfer pada Matahari
16
Corona Corona is what the scientists are after during a Solar Eclipse.
Question: Why are they so interested in the corona? Answer: Because the temperature is over one million degrees in the corona. When the new Moon covers up the photosphere during a total solar eclipse, you can see the pearly-white corona around the dark Moon. This is the rarefied upper atmosphere of the Sun. It has a very high temperature of one to two million Kelvin. Despite its high temperature, it has a low amount of heat because it is so tenuous.
17
Corona Properties The temperature of the corona is more than 1,000,000 K. The corona extends for millions of kms. (reaches beyond the Earth) Gives out only half as much light as a full moon. Very low density (1/10,000,000,000 of sea level) But because of the high T, the corona is an X-ray source. Dark regions in the X-ray, Coronal Holes -> no trapping of corona by magnetic field. The corona is known to be very hot because it has ions with many electrons removed from the atoms. At high enough temperatures the atoms collide with each other with such energy to eject electrons. This process is called ionization. At very high temperatures, atoms like iron can have 9 to 13 electrons ejected. Nine-times ionized iron is only produced at temperatures of 1.3 million K and 13-times ionized iron means the temperature gets up to 2.3 million K! During strong solar activity, the temperature can reach 3.6 million K and lines from 14-times ionized calcium are seen. Most of the corona is trapped close to Sun by loops of magnetic field lines. In X-rays, those regions appear bright. Some magnetic field lines do not loop back to the Sun and will appear dark in X-rays. These places are called “coronal holes”.
18
Aurorae Solar wind causes beautiful displays of aurorae, solar particles caught by Earth’s magnetic field. Influence of the Solar Wind on the Earth As we have already discussed in the section on the Earth, the solar wind can have a large influence on our planet, particularly in times of the active Sun (near sunspot maximum) when the wind is strong and can contain bursts corresponding to flares and coronal mass ejections from the Sun. The solar wind has a significant influence on our ionosphere, the Earth's magnetic field, on Earth's auroras, and on telecommunication systems. For example, there is reason to believe that a burst of particles from a coronal mass ejection detected 5 days earlier by SOHO may have killed the Telstar 401 communications satellite on January 11, 1997. Auroras are caused by high energy particles from the solar wind that are trapped in the Earth's magnetic field. As these particles spiral back and forth along the magnetic field lines, they come down into the atmosphere near the north and south magnetic poles where the magnetic field lines disappear into the body of the Earth. The delicate colors are caused by energetic electrons colliding with oxygen and nitrogen molecules in the atmosphere. This excites the molecules, and when they decay from the excited states they emit the light that we see in the aurora. Strong solar winds can also kill satellites, but this is very rare.
19
The Active Sun The Sun sustains the life on Earth.
Life is very fragile and it takes a long time to develop. Sun has been quite stable for a long time. But stable does not mean quiet. Granulation Sunspots Plages Prominences Solar flares
20
Granulation Honeycomb pattern on the Solar surface.
Caused by the convection of gas. Brighter parts: Hot gas raising from inside, darker parts cooler gas falling back. Darker regions are K colder than the intergranular regions. 700km-1000kms in diameter. Not just around the sunspots. The photosphere under close observation exhibits a mottled appearance that is called granulation. This is a consequence of heat convection below the photosphere. Observation of Granulation The image shows such granulation as the mottled gray regions surrounding a darker sunspot. Cause of Granulation Granulation is due to the convection operating below the photosphere. This convection produces columns of rising gas just below the photosphere that are about 700 to 1000 km in diameter. In these columns hot gas rises with a velocity of several kilometers per second (this can be confirmed by Doppler shift measurements). The tops of these columns are the brighter gray-white cells seen in the granulation images. The hot gas then cools at the top of the column and sinks down in the darker regions surrounding each granule. Thus, granulation just represents the tops of convection currents that are transferring heat from below the solar surface to the surface. In that sense, granules are a little like the tops of cumulus clouds in the Earth's atmosphere, which are also associated with convection currents.
21
Sunspots Sunspots are cooler regions on the surface of the Sun.
About 1500K colder (still 4500K). Diameter is a few 10,000kms. Appear in groups. Even observed by Galileo. Persist for periods ranging from hours to months. Sunspots are regions on the solar surface that appear dark because they are cooler than the surrounding photosphere, typically by about 1500 K (thus, they are still at a temperature of about 4500 K, but this is cool compared to the rest of the photosphere). They are only dark in a relative sense; a sunspot removed from the bright background of the Sun would glow quite brightly. Basic Features of Sunspots The largest sunspots observed have had diameters of about 50,000 km, which makes them large enough to be seen with the naked eye. Sunspots often come in groups with as many as 100 in a group, though sunspot groups with more than about 10 are relatively rare. There are well established methods for measuring the number of sunspots. Sunspots develop and persist for periods ranging from hours to months, and are carried around the surface of the Sun by its rotation (a fact known to Galileo). The image on this page show a single sunspot. A typical sunspot consists of a dark central region called the umbra and somewhat lighter surrounding region called the penumbra. Central dark region is called umbra, lighter surrounding region penumbra (just like the Solar Eclipse). Sunspots are associated with strong magnetic fields: In a pair of sunspots, one spot will have N and the other S polarity.
22
Solar Rotation Sun rotates around itself.
The rotation is in the same sense of the motion of the planets around the Sun. Sun is not a solid body, different parts rotate differently. We use the sunspots to calculate the speed of rotation. Period at the equator is 25 days, near the poles 36 days. Historically, the first measurements of the period for solar rotation were made by tracking sunspots as they appeared to move around the Sun. Galileo used this method to deduce that the Sun had a rotational period of about a month. Because the Sun is not a solid body, it does not have a well defined rotational period. Modern measurements indicate that the rotational period of the Sun is about 25 days near its equator, 28 days at 40 degrees latitude, and 36 days near the poles. The rotation is direct, that is, in the same sense of the motion of the planets around the Sun.
23
Sunspot Cycle Sunspots have been monitored since the time of Galileo. One striking feature that emerges from the long-term data is that the number of sunspots observed in a given year varies in a dramatic and highly predictable way. The 11-Year Sunspot Cycle Some sources for sunspot numbers are listed below. If one plots the total number of sunspots observed in a year as a function of the year the plot shown to the right is obtained. There is a striking variation in the number of sunspots that is cyclic, with a period of approximately 11 years. This 11 year periodicity is called the sunspot cycle. The last solar maximum (period of maximal sunspot activity was in the year Thus, we may expect the next solar maximum early in the next century. The Active and Quiet Sun Sunspot maxima correspond generally to periods of high solar activity. This activity includes increased solar wind and phenomena like aurorae and magnetic storms that are correlated with the solar wind, increased flares and prominences, and increased non-thermal radio and X-ray emission. Conversely, near sunspot minima the Sun is much quieter with respect to these phenomena. In addition, as we have seen there are significant differences in the nature of the corona during periods of active and quiet Suns.
24
Plages Plages are cloud-like features above the photosphere.
Can only be imaged using hydrogen or calcium light. Regions surrounding the sunspots. The density is higher. Hydrogen and calcium are more excited than their surroundings. Plages are bright cloud-like features found around sunspots that represent regions of higher temperature and density within the chromosphere.
25
Prominences Bright clouds of gas following the magnetic field lines.
Can last for many hours, even days. Eruptive prominences are shot up at 700km/s. Origin is unknown. Cool and dense regions in the corona. Related to the sunspots and plages, probably caused by strong magnetic fields. Prominences and plages are structures that occur above the photosphere of the Sun. Plages are bright cloud-like features found around sunspots that represent regions of higher temperature and density within the chromosphere. Prominences are features that may reach high into the corona, often as graceful loops that may hang suspended for many days. Solar Prominences The bright red color of prominences is associated with strong emission of Balmer H-alpha radiation. Quiescent prominences are extremely stable features and remain suspended in the corona where they slowly evolve and become more elongated over the course of several solar rotations (a timescale of a few months). The loops in the prominence shown in the following image are larger than the Earth, which would easily fit under them. Prominences can also appear as eruptive phenomena, with the highest velocities observed as fast as 1300 km/second, and have been observed to reach heights of 1 million kilometers above the photosphere. Prominences and Magnetic Fields Prominences are usually associated with regions of sunspot activity, and are clearly associated with the Sun's magnetic field. They tend to lie on the boundary of regions having opposite magnetic polarity. The streaming arches and their stability for days at a time are associated with magnetic forces acting on the charged particles in the loops. It is thought that the violently eruptive prominences that are sometimes observed are associated with corresponding sudden changes in the magnetic field of the Sun.
26
Solar Flares Solar flares are flares, with temperature around 10,000,000 K. Lasts for a few minutes, and visible light of the Sun does not change much, however the heated gases emit X-rays and ultraviolet. Cause is not well understood. Related to the magnetic fields. Evidence suggests that flares occur when magnetic fields of opposite polarity come together and annihilate each other. During the flares’ violent explosion gases can be thrown into space. The most violent events on the surface of the Sun are sudden eruptions called solar flares. Flares typically last a few minutes and can release energies equivalent to millions of hydrogen bombs. Flares become frequent near sunspot maximum, when smaller flares can occur daily and large flares can occur about once a week. The Cause of Solar Flares Although the cause of flares is not completely understood, they are known to be associated with the magnetic field of the Sun. One favored explanation is that they occur when magnetic fields in the Sun pointing in opposite directions interact strongly with each other. Such a situation can be brought about by the churning motion of solar material near the surface, and is more likely during periods of the active sun. Thus, there typically is a correlation between the frequency of flares and the number of sunspots.
27
Coronal Mass Ejections
During solar flares coronal material can be ejected at high speeds. Mild ones cause beautiful aurorae. Material with electric charge can affect the ability of the atmosphere to reflect the radio waves and can disrupt the radio communications. In worse situations (happened once) solar flares can cause components in long power lines burn. During this flare some satellites were also dragged to lower orbits. Coronal Mass Ejections During a flare the material in the flare may be heated to temperatures of 10 million K; matter at these temperatures emits copious amounts of UV and X-Ray, as well as visible light. In addition, flares tend to eject matter, primarily in the form or protons and electrons, into space at velocities that can approach 1000 km/second. These events are called coronal mass ejections, and produce bursts in the solar wind that influence much of the rest of the Solar System, including the Earth (However, there is controversy within the astrophysics community about whether coronal mass ejections and flares should be classified together; see this discussion). Thus, the observation of a large flare on the surface of the Sun is usually a signal for increased auroras and related activity several days hence when the ejected burst reaches Earth.
28
2. Planet Planet adalah benda langit yang tidak dapat memancarkan cahaya sendiri. Contoh : Merkurius, Venus, Bumi, Mars, Jupiter, Saturnus, Uranus, Neptunus Merkurius Neptunus Venus Uranus Saturnus Bumi Mars Yupiter Komet Asteroid
29
TERRESTRIAL PLANETS: small, dense, and made of rocks and iron
Mercury Mars Venus Earth The Asteroid Belt Uranus Neptune Saturn Jupiter JOVIAN PLANETS: large, low density, and made of gas and ice MODUL 2 - TATASURYA 29 29
30
Pengelompokan Planet Planet inferior a. Bumi sebagai pembatas planet dikelompokkan menjadi dua yaitu planet inferior dan planet superior. Planet superior Planet inferior adalah planet yang orbitnya berada di dalam orbit bumi. Yang termasuk planet inferior antara lain Merkurius dan Venus Planet superior adalah planet yang orbitnya berada diluar orbit bumi. Yang termasuk planet superior adalah Mars, Jupiter , Saturnus, Uranus dan Neptunus Bumi
31
b. Asteroid sebagai pembatas planet dikelompokkan menjadi dua planet dalam dan planet luar
Planet dalam planet yang orbitnya di dalam peredaran Asteroid Yang termasuk planet dalam antara lain Merkurius, Venus, Bumi dan Mars. Planet luar adalah planet yang garis edarnya berada diluar garis edar Asteroid, Yang termasuk planet luar antara lain Jupiter, Saturnus, Uranus dan Neptunus. Asteroid
32
Berdasarkan ukuran dan komposisi penyusunnya, Planet dikelompokkan menjadi planet Terrestrial dan Jovian Planet Terestrial Planet Terrestrial yaitu planet yang memiliki ukuran dan koposisi yang hampir sama dengan bumi, Yang termasuk planet Terrestrial antara lain Merkurius, Venus, Bumi dan Mars. Planet Jovian yaitu planet yang memiliki ukuran sangat besar dan komposisi penyusunnya hampir sama dengan planet Jupiter. yang termasuk planet Jovian antara lain Jupiter, Saturnus, Uranus dan Neptunus. Planet Jovian
33
Hukum Keppler Hukum keppler merupakan hukum – hukum yang menjelaskan tentang gerak planet. Orbit Planet Perihelium Jarak terdekat planet dari matahari Aphelium Jarak terjauh planet dari matahari Garis edar planet ( orbit ) lintasan yang dilalui planet saat mengitari matahari 1. Hukum I Keppler Orbit planet berbentuk elips dimana matahari terletak pada salah satu titik fokusnya.
34
A F M E B C D Hukum II Keppler
Garis yang menghubungkan planet ke matahari dalam waktu yang sama menempuh luasan yang sama Jika waktu planet untuk berevolusi dari AB sama dengan waktu planet untuk berevolusi dari CD sama dengan waktu planet untuk berevolusi dari EF Maka luas AMB = luas CMD = luas EMF A F M E B Sehingga kecepatan revolusi planet dari AB lebih besar kecepatan revolusi planet dari CD dan kecepatan revolusi planet dari CD lebih besar kecepatan revolusi planet dari EF. Semakin dekat matahari kecepatan revolusi planet semakin besar Semakin jauh dari matahari kecepatan revolusi planet semakin lambat. C D
35
Hukum III Keppler Kuadrat kala revolusi planet sebanding dengan pangkat tiga jarak rata – rata planet ke matahari M d2 d1 T1 = Periode revolusi planet 1 T2 = Periode revolusi planet 2 d1 = jarak rata – rata planet 1 ke matahari d2 = jarak rata – rata planet 2 ke matahari
36
P M Gerak Planet Mp = massa planet Mm = massa maahari
Gerak planet dan semua anggota tata surya mengikuti hukum grafitasi universal Hukum Grafitasi Universal. Planet bumi dan planet yang lainnya bergerak mengitari matahari karena pengaruh gaya grafitasi matahari. Gerak satelit mengelilingi planet disebabkan ada gaya grafitasi planet pada satelit. Planet bergerak mengelilingi matahari karena matahari memiliki massa lebih besar dari planet. Satelit mengelilingi planet karena planet memiliki massa lebih besar dari satelit. P F M R Mp = massa planet Mm = massa maahari R = jarak antara massa F = gaya tarik matahari pada planet
37
Besar gaya tarik matahari pada planet adalah sebanding dengan besar massa masing-masing dan berbanding terbalik dengan kuadrat jarak antara pusat massa masing – masing. F = G M 2 F M 1 R F = gaya tarik ( N ) M1 = massa matahari (kg) M2 = massa planet (kg) R = jarak rata- rata matahari dengan planet ( m ) G = konstanta grafitasi umum ( 6, – 11 N m2/kg2)
38
Periode Revolusi Akibat Revolusi bumi Terjadinya pergantian musim di bumi Terlihatnya rasi bintang yang berbeda tiap bulan Terjadi perbedaan lamanya waktu siang dan malam Gerak semu tahunan matahari Periode revolusi adalah waktu yang diperlukan planet mengitari matahari satu kali putaran Belahan Bumi Selatan Awal musim semi, Malam sama panjang dengan siang Belahan Bumi Utara Awal musim gugur, Malam sama panjang dengan siang 23 September Belahan Bumi Selatan lebih condong ke matahari awal musim panas Siang lebih panjang dari malam Belahan Bumi Utara menjauhi matahari awal musim dingin Malam lebih panjang dari siang Belahan Bumi Utara lebih condong ke matahari awal musim panas Siang lebih lama dari malam Belahan Bumi Selatan menjauhi matahari awal musim dingin malam lebih lama dari siang 22 Desember 21 Juni 21 Maret KU KS Belahan Bumi Utara Awal musim semi, Malam sama panjang dengan siang Belahan Bumi Selatan Awal musim gugur, Malam sama panjang dengan siang
39
Periode rotasi adalah waktu yang diperlukan planet berputar pada sumbunya satu kali putaran
Akibat Rotasi 1. Pergantian siang dan malam 2. Perbedaan waktu dibumi yang garis bujurnya berbeda 3. Gerak semu harian matahari 4. Bentuk bumi menggelembung pada katulisiwa dan pepat pada kutubnya. 5. perubahan arah angin di katulistiwa Siang Malam Matahari
40
Tabel data planet Data Microsoft encarta Incyclopedia 2008 Mercurius
Venus Bumi Mars Jupiter Saturnus Uranus Neptunus Jari-jari katulistiwa (x Jari-jari Bumi ) 0.3825 0.9488 1 0.5325 11.21 9.449 4.007 3.883 Massa (x massa Bumi) 0.0553 0.8150 0.1074 317.8 95.16 14.54 17.15 Massa jenis (g/cm3) 5.4 5.2 5.5 3.9 1.3 0.69 1.6 Periode Rotasi (hari) 58.6 -240 1.03 0.414 0.444 -0.718 0.671 Periode Revolusi (tahun) 0.2408 0.6152 1.881 11.86 29.46 84.01 164.8 Jarak rata-rata ke matahari (SA) 0.3871 0.7233 1.524 5.203 9.59 19.10 30 Jumlah Satelit 2 63 56 27 13
41
Jarak rata-rata ke matahari (Bumi = 1 )
3. Asteroid Planet – planet kecil yang berada diantara orbit Mars dan orbit Jupiter. Sumber data Microsoft Encarta encyclopedia 2008. 5.4 3.06 318 Interamnia 5.7 3.18 326 Davida 5.5 3.13 408 Hygiea 3.6 2.36 530 Vesta 4.6 2.77 532 Pallas 950 Ceres* Periode revolusi (Tahun) Jarak rata-rata ke matahari (Bumi = 1 ) Diameter ( km ) nama
42
Asteroids Mathilde & Eros (NEAR) Ida & Dactyl MODUL 2 - TATASURYA 42
43
Foto Asteroid Asteroid 243 Ida Asteroid 433 Eros
44
4. SATELIT Satelit merupakan benda langit yang mengorbit planet dan mengiring planet di dalam mengorbit matahari Satelit alam juga dinamakan Bulan Satelit buatan yang digunakan untuk komunikasi M M Matahari Planet Satelit
45
The Moon
46
Moon: Basic Facts Diameter: 3500 km (2100 miles)
Average Distance: 380,000 km (240,000 miles) Distance range: 360,000 – 400,000 km Orbital eccentricity: .05 Orbital inclination: 5 degrees Earth is 4x as large, 81x as massive Bulk density: 3.3 gm/cc (3400 kg/m3)
47
With Some Very Simple Science, We Can Understand the Geology of the Moon
48
Lunar Rilles
49
How Lunar Rilles May Form
50
A “Lunar” Landscape?
51
Real Lunar Mountains
52
How We Got It Wrong
53
We Can Expect Basalt to be Very Abundant in the Universe
54
Periode Rotasi Bulan Bulan melakukan tiga gerakan putaran sekaligus
Bulan berputara mengitari Bumi ( Revolusi ) Bulan berputar pada porosnya ( Rotasi ) Bulan bersama Bumi mengitari matahari. Bulan didalam berevolusi bidang orbit bulanmembentuk sudut 5o terhadap bidang edar bumi ( ekliptika ) BL 5o Bidang edar bulan dan bidang edar bumi yang membentuk sudut 5o menyebabkan terjadinya gerhana bulan maupun gerhana matahari.
55
Fase Bulan Matahari BL Kuartil akhir Bulan tiga perempat
Bulan sabit akhir BL baru / BL mati Konjungsi Bulan purnama Oposisi BL Bulan tiga perempat Bulan sabit awal Kuartil awal
56
PERUBAHAN PENAMPAKAN BENTUK BULAN (FASE BULAN)
Kwartir Pertama Sabit Muda Bulan Besar Hilal sinar matahari Purnama Bulan Baru (Ijtima’) Bumi Sabit Tua Bulan Susut Kwartir Ketiga Periode fase bulan = 29,53055 hari
57
Gerhana Bulan Matahari Penumbra Bumi Umbra Penumbra Matahari Penumbra
BL Terjadi gerhana bulan
58
Gerhana Matahari Matahari Penumbra Bumi Umbra Penumbra Tempat terjadi Gerhana Matahari Total Gerhana matahari terjadi ketika posisi matahari , bulan dan bumi segaris dan sebidang
59
GERHANA TERDEKAT MELEWATI WILAYAH INDONESIA
Gerhana Matahari Total. Tanggal 9 Maret 2016. Jalur gerhana total melewati: Sum-Sel, Kal-Sel, Sul-Teng dan Sul-Ut. Durasi (lama gerhana total) 4 menit 9,5 detik. Gerhana Matahari Parsial Tanggal 22 Juli 2009. Jalur gerhana melewati bagian Utara dan Timur Indonesia. Gerhana Matahari Cincin Tanggal 26 Januari 2009. Jalur gerhana melewati: Sumatera, Jawa dan Kalimantan. Gerhana Bulan Total Tanggal 4 Mei 2004 Gerhana Bulan Parsial Tanggal 17 Oktober 2005
60
Pasang surut air laut Pasang neap Matahari Pasang Purnama
Atau pasang perbani Pasang Purnama Atau pasang perbani BL Pasang neap
61
5. METEOR Batuan meteorid yang masuk ke atmosfir bumi dan menghasilkan jejak cahaya.
62
Meteor juga dinamakan bintang beralih
63
6. Komet Bagian dari komet Inti, Coma,Awan Hidrogen dan Ekor
Benda langit yang mengorbit matahari dengan lintasan yang sangat lonjong Komet juga dikenal dengan nama Bintang berekor Ekor komet selalu menjauhi matahari Bagian dari komet Inti, Coma,Awan Hidrogen dan Ekor
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.