Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
1
Branch and Bound Lecture 12 CS3024
2
Review: 0/1 knapsack dg backtracking
6/5/06 RMB/Lect12
3
Review: 0/1 knapsack dg backtracking
pi wi pi /wi 1 $40 2 $20 $30 5 $6 3 $50 10 $5 4 $10 $2 6/5/06 RMB/Lect12
4
Review: 0/1 knapsack dg backtracking
6/5/06 RMB/Lect12
5
Review: 0/1 knapsack dg backtracking
6/5/06 RMB/Lect12
6
Review: 0/1 knapsack dg backtracking
6/5/06 RMB/Lect12
7
Review: 0/1 knapsack dg backtracking
Complexity Comparing the DP and backtracking 6/5/06 RMB/Lect12
8
Branch and bound Basic idea and particularities
It is a method to solve combinatorial optimization problems It is based on the same idea as backtracking: it constructs a state space tree and stop developing a branch in this tree as soon as we can decide that it cannot lead to a solution Backtracking: - search for configurations which satisfy some constraints Branch and Bound: - search for configurations which satisfy some constraints and optimize a criterion (objective function) 6/5/06 RMB/Lect12
9
What is Branch and Bound ?
Branch and Bound (B&B):explore all solutions using constraints (bounds) Lower Bound: min. possible value of solution (minimasi) Upper Bound: max. possible value of solution (maksimasi) The problem is split into sub-problems Each sub-problems is expanded until a solution is obtained as long as its cost doesn’t exceed the bounds Its cost must be greater than the lower bound 6/5/06 RMB/Lect12
10
Application: Knapsack Problem
Diberikan n items yang diketahui weights wi dan profit vi, i=1,2,…,n, dan kapasitas knapsack W. Langkah pertama mengurutkan density vi / wi secara descending: v1/w1≥v2/w2≥…≥vn/wn Langkah kedua, menghitung upper bound (ub): ub = v + (W-w)(vi+1/wi+1) 6/5/06 RMB/Lect12
11
Application: Knapsack Problem
Perhatikan tabel knapsack berikut ini. Kapasitas knapsack W adalah 10. 6/5/06 RMB/Lect12
12
Application: Knapsack Problem
Setiap level dari pohon ruang status menyatakan subsets dari n items. Path dari root memiliki dua cabang, masing-masing menyatakan: Cabang kiri inclusion item Cabang kanan exclusion item Hitung ub root = 100 6/5/06 RMB/Lect12
13
Application: Knapsack Problem
6/5/06 RMB/Lect12
14
Application: TSP Problem
Tentukan lb dengan panjang l dari setiap tour dengan formula: Untuk setiap kota i, 1≤i≤n, hitung hasil penjumlahan jarak si dari kota i ke dua kota terdekatnya. Lakukan penjumlahan tersebut sebanyak n, kemudian hasilnya bagi dengan 2. Lb = s/2 6/5/06 RMB/Lect12
15
Application: TSP Problem
Perhatikan graf berbobot berikut ini 6/5/06 RMB/Lect12
16
Application: TSP Problem
Sebagai contoh, lb awal menghasilkan Lb = [(1+3)+(3+6)+(1+2)+(3+4)+(2+3)]/2 = 14 Persamaan lb tersebut dimodifikasi untuk edge(a,d) dan (d,a) atau tour lainnya: [(1+5)+(3+6)+(1+2)+(3+5)+(2+3)]/2 = 16 6/5/06 RMB/Lect12
17
Application: TSP Problem
6/5/06 RMB/Lect12
18
Exercises Terapkan algoritma branch and bound untuk persoalan knapsack berikut ini. 6/5/06 RMB/Lect12
19
Exercises Terapkan algoritma branch and bound untuk persoalan TSP dari graph berikut ini. 6/5/06 RMB/Lect12
20
Breadth-first search with branch and bound pruning
Best-first search with branch-and-bound pruning. 6/5/06 RMB/Lect12
21
BFS with Branch and Bound Pruning
W=16, n=4 i pi wi pi /wi 1 $40 2 $20 $30 5 $6 3 $50 10 $5 4 $10 $2 6/5/06 RMB/Lect12
22
BFS with Branch and Bound Pruning
6/5/06 RMB/Lect12
23
BFS with Branch and Bound Pruning Algorithm
6/5/06 RMB/Lect12
24
6/5/06 RMB/Lect12
25
6/5/06 RMB/Lect12
26
Best-first search with Branch and Bound Pruning
6/5/06 RMB/Lect12
27
Best first search algorithm
6/5/06 RMB/Lect12
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.