Upload presentasi
Presentasi sedang didownload. Silahkan tunggu
1
BARISAN DAN DERET GEOMETRI
Tri Rahajoeningroem, MT Teknik Elektro - UNIKOM
2
KOMPETENSI DASAR MENENTUKAN SUKU KE – n BARISAN DAN JUMLAH n SUKU DERET GEOMETRI MENGGUNAKAN NOTASI SIGMA DALAM DERET DAN INDUKSI MATEMATIKA DALAM PEMBUKTIAN MERANCANG MODEL MATEMATIKA DARI MASALAH YANG BERKAITAN DENGAN DERET MENYELESAIKAN MODEL MATEMATIKA YANG BERKAITAN DENGAN DERET DAN PENAFSIRANNYA MENGGUNAKAN KONSEP BARISAN DAN DERET GEOMETRI DALAM PEMECAHAN MASALAH
3
MATERI POKOK / URAIAN MATERI
BARISAN DAN DERET GEOMETRI SUKU KE n BARISAN DAN DERET GEOMETRI SISIPAN SUKU TENGAH JUMLAH n SUKU DERET GEOMETRI DERET GEOMETRI TAK HINGGA NOTASI SIGMA INDUKSI MATEMATIKA MODEL MATEMATIKA DARI MASALAH SOLUSI DARI MASALAH MATEMATIKA
4
BARISAN GEOMETRI Pengertian
Barisan Geometri adalah barisan bilangan yang memiliki rasio konstan rasio : perbandingan antara 2 suku berurutan U1, U2, U3, U4, U5, … Un,
5
r = rasio = perbandingan 2 suku yang berdekatan
= Un / Un-1 a = U1 = Suku = bilangan pada urutan pertama Un = Suku ke-n = bilangan pada urutan ke-n =
6
Pembuktian Maka U1, U2, U3, U4, U5, … Un, Jika U1 = a U1 = a U2 = ar
…. Maka Un = ar n-1
7
Contoh soal 1 Suku ke lima suatu barisan geometri 96, suku kedua 12. Nilai suku ke 8 adalah …. A. 768 B. 512 C. 256 D. 6 E. 2
8
U5 = ar4 = 96 U2 = ar = 12 ar4 = 96 r3 = 8 r = 2 ar = 12 U2 = ar = 12 a.2 = 12 a = 6 U8 = a.r7 = 6.27 = 768
9
Suku tengah Suku tengah barisan geometri dapat dilihat berikut ini :
U1, U2, U3, maka suku tengahnya U2, U2 =
10
Lanjutan : U1, U2, U3, U4, U5, maka suku tengahnya U3, U3 =
11
Lanjutan : Dengan cara yang sama jika U1, U2, U3, U4, … Uk
Dengan k adalah ganjil maka suku tengahnya Ut = dengan k = ganjil Ut = suku tengah Uk = suku ke – k (terakhir)
12
DERET GEOMETRI Andaikan U1, U2, U3, …, Un merupakan suku-suku barisan Geometri, maka U1 + U2 + U3 + … + Un disebut deret geometri. Andaikan jumlah n suku pertama deret tersebut Sn maka : (Sn)
13
Pembuktian Sn – r.Sn = a - arn (1 – r).Sn = a(1 – rn) atau
Sn = U1 + U2 + U3 + … + Un Sn = a + ar + ar2 + … + arn-1 Sn = a + ar + ar2 + … + arn-1 r. Sn = r.(a + ar + ar2 + … + arn-1) - Sn – r.Sn = a - arn (1 – r).Sn = a(1 – rn) atau
14
Sn = Jumlah n buah suku pertama sampai dengan suku ke-n
= U1 + U2 + U Un r = rasio = perbandingan 2 suku yang berdekatan = Un / Un-1 a = U1 = Suku = bilangan pada urutan pertama Jumlah
15
Tentukan jumlah 10 suku pertama deret geometri 2, 4, 8, ….
Contoh soal 2 Tentukan jumlah 10 suku pertama deret geometri 2, 4, 8, ….
16
Contoh soal 3 Kertas yang dibutuhkan Andi untuk menggambar setiap minggu berjumlah 2 kali lipat dari minggu sebelumnya. Jika minggu pertama Andi membutuhkan 20 kertas. Banyak kertas yang dipergunakan selama 6 minggu adalah … A. 1260 B. 310 C. 256 D. 64 E. 20
17
Dik. U1 = a = 20 r = 2 Dit S6 S6 = a. rn -1 = – 1= 1260 r Jumlah selama 6 minggu = 1260 lembar
18
DERET GEOMETRI TAK HINGGA
19
PEMBUKTIAN Dari rumus jumlah deret geometri
apabila n mendekati tak hingga, maka diperoleh atau
20
Contoh soal 4 Jumlah tak hingga dari sebuah deret geometri tak hingga adalah 36. Jika suku pertama 24. Besar suku rasionya adalah …. A. 3 B. 2 C. 0 D. ½ E. 1/3
21
Dik. S~ = 36 a = 24 Dit : r = 36(1 – r) = 24 36 -36r = 24
Jawab Dik. S~ = 36 a = 24 Dit : r = 36(1 – r) = 24 36 -36r = 24 -36r = 24 – 36 -36r = -12 r = 1/3
22
Latihan 1 Seorang karyawan menerima gaji pertama sebesar Rp , setiap tiga bulan gajinya naik Rp Gaji yang telah diterima karyawan tersebut selama 2 tahun adalah ....
23
U1 = U2 = U3 = Dst a = b = n = 2*12/3 = 8 Sn = 8/2 {2x x ) = Rp
24
Latihan 2 Harga sebuah barang setiap tahun menyusut 20%. Jika harga pembelian barang tersebut Rp Harga pada tahunke-4 adalah ….
25
a = r = 100% - 20% = 80% = 0,8 U4 = a.r3 = *0,83 = Rp
26
Latihan 3 Jumlah suku ke-n suatu barisan ditentukan dengan rumus n2 + n. Nilai suku ke-10 adalah …
27
Sn = n2 + n Dit U10 U10 = S10 – s9 = ( ) – (92 + 9) = 110 – 90 = 20
Presentasi serupa
© 2024 SlidePlayer.info Inc.
All rights reserved.