Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

Linier Programming (2) Metode Grafik.

Presentasi serupa


Presentasi berjudul: "Linier Programming (2) Metode Grafik."— Transcript presentasi:

1 Linier Programming (2) Metode Grafik

2 Pengantar (1) Metode grafik merupakan prosedur penyelesaian persoalan LP dengan menggunakan teknik pendekatan grafis untuk mencari titik yang optimal Syarat suatu kasus dapat diselesaikan dengan metode grafik : Variabel keputusan = 2 Jumlah fungsi pembatas ≥ 1 Jenis tanda pada fungsi pembatas bertanda ≤, ≥ dan =

3 LINEAR PROGRAMMING DENGAN METODE GRAFIK
Contoh Perusahaan sepatu membuat 2 macam sepatu. Yang pertama merek I1, dgn sol karet, dan merek I2 dgn sol kulit. Diperlukan 3 macam mesin. Mesin 1 membuat sol karet, mesin 2 membuat sol kulit, dan mesin 3 membuat bagian atas sepatu dan melakukan assembling bagian atas dengan sol. Setiap lusin sepatu merek I1 mula-mula dikerjakan di mesin 1 selama 2 jam, kemudian tanpa melalui mesin 2 terus dikerjakan di mesin 3 selama 6 jam. Sedang untuk sepatu merek I2 tidak diproses di mesin 1, tetapi pertama kali dikerjakan di mesin 2 selama 3 jam kemudian di mesin 3 selama 5 jam. Jam kerja maksimum setiap hari mesin 1 adalah 8 jam, mesin 2 adalah 15 jam, dan mesin 3 adalah 30 jam. Sumbangan terhadap laba setiap lusin sepatu merek I1 = Rp ,00 sedang merek I2 = Rp ,00. Masalahnya adalah menentukan berapa lusin sebaiknya sepatu merek I1 dan merek I2 yang dibuat agar bisa memaksimumkan laba.

4 Bentuk Tabel Merek Mesin I1 (X1) I2 (X2) Kapasitas Maksimum 1 2 8 3 15
8 3 15 6 5 30 Sumbangan laba

5 Bentuk Matematis Maksimumkan Z = 3X1 + 5X2 Batasan (constrain)

6 Fungsi batasan pertama (2 X1  8)
2X1  8 dan X1  0, X2  0 4 X1 Gambar di atas merupakan bagian yang memenuhi batasan-batasan: X1  0, X2  0 dan 2X1  8

7 Fungsi batasan (2 X1  8); 3X2  15; 6X1 + 5X2  30; X1  0 dan X2  0
6 5 6X1 + 5X2 = 30 2X1 = 8 4 D C 3X2 = 15 5 Daerah feasible B A

8 MENCARI KOMBINASI YANG OPTIMUM
Dengan membandingkan nilai Z pada tiap-tiap alternatif Z = 3X1 + 5X2 X2 X1 6 5 6X1 + 5X2 = 30 2X1 = 8 4 Titik C: X2 = 5. Substitusikan batasan (3), maka 6X1 + 5(5) = 30. Jadi nilai X1 = (30 –25)/6 = 5/6. Nilai Z = 3(5/6) + 5(5) = 27,5 Titik D: Pada titik ini nilai X2 = 5; X1 = 0 Nilai Z = 3(0) + 5(5) = 25 D C 3X2 = 15 5 Titik A: Pada titik ini nilai X1 = 4; X2 = 0 Nilai Z = 3(4) + 0 = 12 Titik B: X1 = 4. Substitusikan batasan (3), maka 6(4) + 5X2 = 30. Jadi nilai X2 = (30 –24)/5 = 6/5. Nilai Z = 3(4) + 5(6/5) =18 Daerah feasible B A

9 Fungsi batasan bertanda “lebih besar atau sama dengan (  )
Contoh : Batasan ketiga (6X1 + 5X2  30) diubah ketidaksamaannya menjadi 6X1 + 5X2  30 X2 X1 6 5 6X1 + 5X2 = 30 2X2 = 8 4 5 3X2 = 15 C B Daerah feasible A

10 Fungsi batasan bertanda “sama dengan” ( = )
X2 6X1 + 5X2 = 30 2X2 = 8 6 C B 3X2 = 15 4 2 A 4 5 X1


Download ppt "Linier Programming (2) Metode Grafik."

Presentasi serupa


Iklan oleh Google