Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

REPRESENTASI PENGETAHUAN

Presentasi serupa


Presentasi berjudul: "REPRESENTASI PENGETAHUAN"— Transcript presentasi:

1 REPRESENTASI PENGETAHUAN
Pertemuan 6 Diema Hernyka Satyareni, M. Kom

2 KOMPETENSI DASAR Mahasiswa dapat merepresentasi pengetahuan dalam Sistem Intelegensia

3 MATERI BAHASAN Logika Jaringan Semantik Frame Script

4 Representasi logika terdiri dari dua jenis yaitu:
Logika proposisional ( Propositional logic ) Logika predikatif (Predicate logic).

5 Logika Proposisional (PropositionalLogic)
Proposisi adalah suatu model untuk mendeklarasikan suatu fakta (suatu pernyataan yang dapat bernilai benar(B) atau salah(S). Lambang-lambang proposisional menunjukkan proposisi atau pernyataan tentang segala sesuatu yang dapat benar atau salah.

6 LAMBANG –LAMBANG PROPOSISI
Lambang pernyataan proposisional P,Q,R,S,T,... (disebut sebagai atom-atom) Lambang kebenaran Benar (True) , Salah (False) Lambang penghubung Konjungsi :  (and) Disjungsi :  (or) Implikasi :  (if-then) ekuivalensi: ↔ Negasi :  (not)

7 Tabel Kebenaran P Q P  Q B S P Q P  Q B S P P B S P Q P  Q B S P Q

8 RESOLUSI (Pembuktian Teorema)
Untuk menggunakan teori proposisi, maka digunakan ”Resolusi”, yaitu suatu aturan untuk melakukan inferensi yang dapat berjalan secara efisien dalam suatu bentuk khusus yang disebut CNF (Conjunctive Normal Form). Bentuk dan ciri-ciri CNF : Setiap kalimat merupakan disjungsi literal (OR) Semua kalimat terkonjungsi secara implisit.

9 Langkah-langkah mengubah suatu kalimat ke dalam bentuk CNF
Hilangkan implikasi dan ekuivalensi. xy menjadi xy x↔y menjadi (xy) (yx) Kurangi lingkup semua negasi menjadi satu negasi saja. (x) menjadi x (xy) menjadi (xy) (xy) menjadi (xy) Gunakan aturan asosiatif dan distributif untuk mengkonversi menjadi conjungtion of disjunction. Asosiatif : (AB) C = A(BC) Distributif : (AB) C = (AC)(BC) Buat satu kalimat terpisah untuk tiap-tiap konjungsi.

10 CONTOH Diketahui basis pengetahuan (fakta-fakta yang bernilai benar) sebagai berikut: 1. P 2. (P ∧ Q) R 3. (S ∨ T) Q 4. T Tentukan kebenaran R. Untuk membuktikan kebenaran R dengan menggunakan resolusi,maka ubah dulu menjadi bentuk CNF.

11 CONTOH

12 CONTOH Kemudian kita tambahkan kontradiksi pada tujuannya, R menjadi ¬ R sehingga fakta-fakta (dalam bentuk CNF) dapat disusun menjadi : 1. P 2. ¬ P ∨ ¬ Q ∨ R 3. ¬ S ∨ Q 4. ¬ T∨ Q 5. T 6. ¬ R Sehingga resolusi dapat dilakukan untuk membuktikan kebenaran R, sebagai berikut

13 Contoh bila diterapkan dalam kalimat
P: Eko anak yang cerdas Q: Eko rajin belajar R: Eko akan menjadi Juara Kelas S: Eko makannya banyak T: Eko istirahatnya cukup

14 Kalimat yang terbentuk
P : Eko anak yang cerdas (P ∧ Q) R : Jika Eko anak yang cerdas dan Eko rajin belajar, maka Eko akan menjadi juara kelas (S ∨ T) Q : Jika Eko makannya banyak atau Eko istirahatnya cukup, maka Eko rajin belajar T : Eko istirahatnya cukup

15 Setelah dilakukan konversi CNF, didapat:
¬ P ∨ ¬ Q ∨ R : Eko tidak cerdas atau Eko tidak rajin belajar atau Eko akan menjadi juara kelas ¬ S ∨ Q : Eko tidak makan banyak atau Eko rajin belajar ¬ T∨ Q : Eko tidak cukup istirahat T : Eko istirahatnya cukup ¬ R : Eko tidak akan menjadi Juara Kelas P : Eko anak yang cerdas

16 Pohon aplikasi resolusi
Eko tidak cerdas atau Eko tidak rajin belajar atau Eko akan menjadi juara kelas Eko tidak rajin belajar Eko tidak cukup istirahat, atau Eko rajin belajar Eko tidak cukup istirahat, Eko tidak akan menjadi juara kelas Eko anak yang cerdas Eko istirahatnya cukup

17 Logika Predikat Logika predikat merupakan satu formula yang terdiri dari predikat, variabel dan konstanta Logika predikat digunakan untuk merepresentasikan hal-hal yang tidak dapat di representasikan dengan menggunakan logika proposisi. Pada logika predikat digunakan untuk merepresentasikan fakta-fakta sebagai suatu pernyataan yang disebut dengan wff(well- formed formula)

18 Contoh WARNA (RUMAH, MERAH) : predikat ini menggambarkan warna rumah merah, dimana WARNA adalah predikat, RUMAH dan MERAH adalah suatu konstanta. WARNA (x, MERAH) : x adalah variabel yang menyatakan sembarang benda yang berwarna merah WARNA (x,y) : Predikat ini menyatakan suatu sifat warna antara variabel x dan y

19 Contoh Kalkulus predikat bersifat rangkaian seperti : Konjungtif fakta : Amin tinggal di rumah yang berwarna kuning formula : TINGGAL (AMIN,RUMAH) ∧ WARNA(RUMAH,KUNING) Disjungtif fakta : Amin bisa main biola atau piano Formula : MAIN (AMIN,BIOLA) V MAIN (AMIN,PIANO) Negasi fakta : Amin tidak bisa main biola Formula : -MAIN(AMIN,BIOLA)

20 Contoh Implikasi fakta : Amin mempunyai mobil biru (fakta tersebut mengandung arti bila Amin mempunyai mobil maka mobil itu berwarna biru) formula : PUNYA(AMIN,MOBIL_A)WARNA(MOBIL_A,BIRU) Kuantifier (penghitung) kuantifier adalah suatu simbol dalam satu formula yang membenarkan formula itu dalam satu domain. misal : fakta : Amin punya mobil formula : PUNYA (x,y)

21 Kuantifier ini memiliki beberapa tipe yaitu :
Contoh fakta tersebut bisa ditulis PUNYA(AMIN,MOBIL) dimana AMIN dan MOBIL adalah kuantifier dari variabel x dan y Kuantifier ini memiliki beberapa tipe yaitu : Kuantifier universal dimana semua konstan membenarkan formula itu misal : fakta : semua kucing mempunyai empat kaki formula : (x) BINATANG(x,KUCING)KAKI(x,4) Kuantifier yang berlaku untuk suatu keadaan saja fakta : ada satu kucing berkaki tiga Formula : (x)BINATANG (x,KUCING) KAKI(x,3)

22 Jaringan Semantik Implementasi Jaringan Semantik Penyakit Infeksi

23 FRAME (Bingkai) Frame berupa kumpulan-kumpulan slot-slot yang digunakan atau merupakan atribut untuk mendeskripsikan pengetahuan. Pengetahuan yang termuat dalam slot dapat berupa kejadian, lokasi, situasi ataupun elemen-elemen lain.

24 STRUKTUR FRAME

25 Subslot : menjelaskan pengetahuan atau prosedur dari atribut pada slot
ELEMEN DASAR FRAME Slot : merupakan kumpulan atribut atau properti yang menjelaskan objek yang direpresentasikan oleh frame Subslot : menjelaskan pengetahuan atau prosedur dari atribut pada slot

26 Isi dari slot dalam frame
Informasi identifikasi frame. Hubungan frame dengan frame yang lain. Penggambaran persyaratan yang dibutuhkan frame. Informasi prosedural untuk menggunakan struktur yang digambarkan. Informasi default frame. Informasi baru

27 Bentuk dari subslot Value : nilai dari suatu atribut.
Default : nilai yang digunakan jika slot kosong atau tidak dideskripsikan pada instansiasi frame. Range : jenis informasi yang muncul pada slot. If added : berisi informasi tindakan yang akan dikerjakan jika nilai slot diisi. If needed : Facet (subslot) ini digunakan pada kasus dimana tidak ada value pada slot. Other : Slot dapat berisi frame, rule, jaringan semantik ataupun tipe lain dari informasi.

28 Contoh 1. Frame Kelas dari Penyakit Infeksi

29 Contoh 2 Deskripsi frame untuk kamar hotel.

30 Script Script merupakan skema representasi pengetahuan yang sama dengan frame, Hanya saja frame menggambarkan objek sedangkan script menggambarkan urutan peristiwa Penggambaran urutan peristiwa pada script menggunakan serangkaian slot yang berisi informasi tentang orang, objek dan tindakan-tindakan yang terjadi dalam suatu peristiwa

31 Elemen-elemen Script Kondisi input : kondisi yang harus dipenuhi sebelum terjadi suatu peristiwa dalam script Track : variasi yang mungkin terjadi dalam suatu script Prop : obyek-obyek pendukung yang digunakan selama peristiwa terjadi Role : peran yang dimainkan oleh seseorang dalam peristiwa Scene : adegan yang dimainkan yang menjadi bagian dari suatu peristiwa Hasil : kondisi yang ada setelah urutan peristiwa dalam script terjadi.

32 Contoh Script Untuk Pembelian Obat Di Apotek

33 TUGAS Buatlah script ujian tertulis mata kuliah sistem intelegensia


Download ppt "REPRESENTASI PENGETAHUAN"

Presentasi serupa


Iklan oleh Google