Presentasi sedang didownload. Silahkan tunggu

Presentasi sedang didownload. Silahkan tunggu

HIPOTESIS DAN PENGUJIAN HIPOTESIS

Presentasi serupa


Presentasi berjudul: "HIPOTESIS DAN PENGUJIAN HIPOTESIS"— Transcript presentasi:

1 HIPOTESIS DAN PENGUJIAN HIPOTESIS
STATISTIKA KULIAH KE 11

2 Sub Pokok Bahasan Pengertian hipotesis, hipotesis nol dan hipotesis alternatif Derajat signifikasi dan pengaruhnya pada nilai kritis Pengertian satu sisi dan dua sisi serta hubungannya dengan rumusan hipotesis alternatif Contoh pengujian hipotesis mengenai proporsi Contoh pengujian hipotesis mengenai nilai rata-rata Contoh pengujian hipotesis mengenai varian

3 Pengertian Hipotesis Hipotesis statistik ialah suatu anggapan/ pernyataan yang mungkin benar atau tidak mengenai suatu populasi Hipotesis adalah suatu dugaan yang telah diambil sebelum data dikumpulkan. Dugaan ini dibuat berdasarkan kajian teori mengenai parameter populasi Secara absolut kebenaran hipotesis dibuktikan dengan menguji seluruh populasi. Hipotesis diterima jika tak satupun dari anggota populasi menyangkalnya Tetapi menguji seluruh anggota populasi yang luas tidaklah mudah, oleh sebab itu sebagai alternatif dilakukan pengujian terhadap sampel yang mewakili populasi.

4 Keterbatasan pengujian
Keterbatasan ukuran sampel akan mengurangi keyakinan terhadap penerimaan hipotesis, tetapi selang keyakinan tertentu dapat diambil sebagai dasar mengambil keputusan Pengujian hipotesis dengan selang keyakinan tertentu ini menghasilkan kebenaran yang tidak deterministik melainkan kebenaran dengan peluang salah dan benar yang tertentu

5 Hipotesis nol dan hipotesis alternatif
Prosedur pengujian hipotesis dimulai dengan merumuskan hipotesis nol atau Ho. Penolakan Ho memiliki konsekwensi penerimaan hipotesis tandingan yang dinyatakan dengan H1 Hipotesis nol menunjuk pada nilai yang tepat sehingga disebutkan dengan tanda sama dengan, sedangkan hipotesis alternatif dapat menunjuk pada beberapa nilai lain diluar hipotesis nol sehingga dikaitkan dengan tanda lebih besar atau lebih kecil Sebagai contoh jika Ho menyatakan nilai p=4 maka H1 dapat bernilai p>4 yaitu 5,6,7 dst.

6 Derajat signifikan dan pengaruh nilai kritis
Batas antara daerah penerimaan dan daerah penolakan hipotesis ini disebut daerah kritis. Batas daaerah penerimaan ditentukan oleh derajat signifikan () Daerah tolak

7 Gambaran derajat signifikan
Suatu sampel yang nilainya dekat dengan nilai rata-rata dianggap pendukung Ho Sampel yang nilainya jauh lebih kecil atau lebih besar dianggap menolak (H1) Daerah tolak /2

8 PENGUJIAN SATU SISI DAN DUA SISI
Jika rumusan hipotesis nol dan hipotesis tandingan berbentuk: Ho = A dan H1>A maka pengujian disebut pengujian satu sisi Jika rumusannya berbentuk Ho = A dan H1 ≠ A maka pengujian disebut pengujian dua sisi

9 Uji dua sisi Pada uji dua sisi nilai kritis pada sisi kiri dan kanan adalah Zα/2 sehingga luas total dibawah kurva tolak adalah α. Zα/2 -Zα/2

10 Hipotesis alternatif Hipotesis yang diuji kebenarannya adalah 0. Ditolak 0 diterima hipotesis alternatif. Jika hipotesis alternatif  < 0 daerah tolak adalah z <-z Jika hipotesis alternatif  > 0 daerah tolak adalah z >z Jika hipotesis alternatif   0 daerah tolak adalah z <-z/2 dan z >z /2

11 UJI HIPOTESIS NILAI RATA-RATA
Hipotesis nol untuk uji hipotesis ini adalah , jika varian diketahui, statistik uji adalah: Jika varian tidak diketahui maka dipakai statistik uji: dengan (v = n-1)

12 UJI HIPOTESIS SELISIH NILAI RATA-RATA
Hipotesis nol untuk uji hipotesis ini adalah , jika varian diketahui, statistik uji adalah Jika varian sama tetapi tidak diketahui maka statistik uji adalah: tstudent

13 Direncanakan kekuatan beton suatu struktur adalah 20Mpa
Direncanakan kekuatan beton suatu struktur adalah 20Mpa. Maka dari uji sampel yang akan ditolak adalah yang kecil dari 20 Mpa , sehingga hipotesis yang diterima adalah: H0 = 20Mpa H1 < 20 Mpa Suatu perusahaan pengembang menyatakan bahwa 70% dari rumah yang dibangun dewasa ini bermodel minimalis. H0 = 0.7 H1  0.7

14 Contoh uji hipotesis mutu beton
Hipotesis: fc>30mpa Ho=30 H1>30 Xrata=34mpa N=8 =5% Z > Z maka H1 > H0 Hipotesis Ho ditolak dan Hipotesis H1 diterima.

15 Uji hipotesis proporsi
Hipotesis nol untuk uji ini adalah X=np atau X/n =p Statistik uji

16 Contoh uji proporsi mahasiswa lulus ujian
Hipotesis: proporsi Ho= 60% H1 >60% Dari 40 mhs lulus 25 Dari 400 mhs lulus 250 > 0 maka daerah tolak adalah Z> z0 Ztabel = 1.64 Pada =0.05 Z < Z tabel.. Hipotesis H0 diterima Proporsi Mahasiswa yang lulus kurang atau sama dengan 60%

17 Latihan1 Dinyatakan tinggi muka air di bendung
T < 6m dengan =1m. Dari data tinggi air dimuka bendung diperoleh rata-rata X=5.7m dengan jumlah data 12. Dengan =5%.

18 Latihan 2 (a). Tentukan rata-rata dan standar deviasi
Hasil uji beban kapasitas pondasi tiang adalah sbb: NO Kapasitas(ton) 1 85 2 73 3 97 4 90 5 87 6 91 7 78 8 9 81 10 (a). Tentukan rata-rata dan standar deviasi (b) Ujilah hipotesis untuk H1 > 85

19 Latihan 3 Berdasarkan data terdahulu dinyatakan tingkat partisipasi masyarakat dalam pemilihan walikota hanya 70% dengan =2.5%. Bila di kota A dengan 100 pemilih diperoleh bahwa yang berpartisipasi 65%(=5%), apakah kondisi sekarang lebih baik dibanding tahun lalu?


Download ppt "HIPOTESIS DAN PENGUJIAN HIPOTESIS"

Presentasi serupa


Iklan oleh Google